

Spin states of H₂D⁺ and D₂H⁺ as chemical age tracers

Olli Sipilä

Center for Astrochemical Studies (CAS) Max Planck Institute for Extraterrestrial Physics

This presentation is based on the following two papers:

H_2D^+ observations give an age of at least one million years for a cloud core forming Sun-like stars

Sandra Brünken¹, Olli Sipilä^{2,3}, Edward T. Chambers¹, Jorma Harju², Paola Caselli^{3,4}, Oskar Asvany¹, Cornelia E. Honingh¹, Tomasz Kamiński⁵, Karl M. Menten⁵, Jürgen Stutzki¹ & Stephan Schlemmer¹

Nature 515, 219

DETECTION OF INTERSTELLAR ORTHO- $\mathrm{D_2H^+}$ WITH SOFIA

Jorma Harju^{1,2,6}, Olli Sipilä¹, Sandra Brünken³, Stephan Schlemmer³, Paola Caselli¹, Mika Juvela², Karl M. Menten⁴, Jürgen Stutzki³, Oskar Asvany³, Tomasz Kamiński^{4,5}, Yoko Okada³, and Ronan Higgins³

 $^1 \mathrm{Max}\text{-}\mathrm{Planck}\text{-}\mathrm{Institut}$ für extraterrestrische Physik, Gießenbachstraße 1, 85748 Garching, Germany

²Department of Physics, P.O. BOX 64, 00014 University of Helsinki, Finland

 3 I. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

 4 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany

 $^5\mathrm{Harvard}\text{-}\mathrm{Smithsonian}$ Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA

 6 harju@mpe.mpg.de

ApJ accepted, arXiv:1704.02526

- first confirmed detection of para-H₂D⁺ in space, toward IRAS 16293-2422 A/B (SOFIA Cycle 2)
- we modeled the emission/absorption of ortho and para H₂D⁺ using a pseudo-timedependent chemical model + radiative transfer
- $H_{3^+} + H_2$ chemistry from Hugo et al. (2009), rest of non-D chemistry from OSU
- deuterium and spin-state chemistry from Sipilä et al. (2013), where the spin-state chemistry was generated using the method of Oka (2004)
- physical model static, consists of two phases: 1) homogeneous dark cloud; 2) protostellar core (structure from Crimier et al. (2010))

density, temperature of the source model

modeled H₂D⁺ o/p ratio

H_2D^+ seems to be a more robust chemical age tracer than N_2D^+/N_2H^+

observed + modeled spectra

- observed H₂D⁺ o/p ratio (0.065±0.019) implies a very low H₂ o/p ratio
- best-fit chemical age based on this analysis is 10⁶+10⁶ yr
- the model is rather simple, for example the continuum is added after the RT calculations
- we only had one pair of lines to fit

- in *SOFIA* Cycle 3, we obtained the first detection of ortho- D_2H^+ in space
- coupled with an APEX observation of para-D₂H⁺, we now have data on both spin states of H₂D⁺ and D₂H⁺ towards the same line of sight
- we proceeded to reanalyze the problem using an improved modeling approach
- the chemical model was updated based on Sipilä et al. (2015a,b); spin chemistry derived using a group-theoretical approach
- now using KIDA instead of OSU
- the RT calculations now consider the continuum as well; small velocity shift introduced between the core and the ambient cloud

- in Sipilä et al. (2015b; A&A 581, A122) we discussed the spin-state chemistry of deuterated ammonia in detail
- we constructed new gas-phase and grain-surface reaction sets where the spin chemistry of deuterated species was derived based on symmetry rules (H₃+ + H₂ chemistry still taken from Hugo et al. 2009)
- the underlying assumption is complete scrambling

H_3	H ₂	$H_2 + H$			D ₃	$D_2 + D$			
	$A\otimes A$	$B \otimes A$	Σ			$A\otimes A$	$B \otimes A$	Σ	
$4A_{1}$	4	0	4		$10A_{1}$	10	0	10	
$0A_2$	0	0	0		$1 A_2$	0	1	1	
2E	2	2	4		8 E	8	8	16	
Σ	6	2	8		Σ	18	9	27	

Table A.1. Statistical nuclear spin branching ratios for reactions H₂ +

 $H \rightleftharpoons H_3$ and $D_2 + D \rightleftharpoons D_3$.

Table A.5. Statistical nuclear spin branching ratios of the reaction $D_6 \rightleftharpoons D_4 + D_2$.

D_6	$D_4 + D_2$									
	A_1, A	A_1, B	E, A	E, B	F_1, A	F_1, B	F_2, A	F_2, B	Σ	
$28A_{1}$	28	0	0	0	0	0	0	0	28	
$35 H_1$	35	35	0	0	105	0	0	0	175	
$1 H_{3}$	0	0	2	0	0	0	0	3	5	
$10 H_4$	0	0	0	20	30	0	0	0	50	
$27 L_1$	27	0	54	0	81	81	0	0	243	
$10 M_1$	0	10	0	0	30	30	30	0	100	
8 <i>S</i>	0	0	16	16	24	24	24	24	128	
Σ	90	45	72	36	270	135	54	27	729	

energy effects neglected so far, no vibrational excitation

physical structure of the model core
+ ambient cloud

abundances of selected species at $t = 5x10^5$ yr

the ambient cloud is a bit denser than in the previous paper (temperature was varied too)

initial abundances (obviously) make a difference to the time evolution

o/p-H2D+

1E3 o/p-H2 p/o-D2H+ o/m-D3+

o/p ratios at $t = 5x10^5$ yr

average o/p ratios

10⁶

abundances not in steady state!

observed + modeled spectra, Harju et al. (2017)

best-fit chemical age is refined to $5x10^5+5x10^5 (\pm 2x10^5)$ yr, i.e., still of the order of 10^6 yr in total

• the dominant reaction that influences the H_2D^+ o/p ratio is

$$pH_2D^+ + oH_2 \underset{k_1^-}{\overset{k_1^+}{\rightleftharpoons}} oH_2D^+ + pH_2$$

• an in-depth analysis of the reaction rates revealed that

$$k_1^+/k_1^- \sim 2.25 \, \exp(87.7/T)$$

while the equilibrium constant is

$$K_1(T) \equiv \frac{k_1^+}{k_1^-} = \frac{Q_{\text{oH}_2\text{D}^+}(T)}{Q_{\text{pH}_2\text{D}^+}(T)} \frac{Q_{\text{pH}_2}(T)}{Q_{\text{oH}_2}(T)} \sim \exp(84.1/T)$$

hinting that ortho-H₂D⁺ is overproduced in the model

- a simple test where the rate coefficient of the backward reaction is increased yields a much better agreement with the observations
- this implies that the effect of excited rotational states on the rate coefficients should not be ignored
- this makes sense also because H₂D⁺ is detected in emission ubiquitously

- upcoming publication on the effect of excited rotational states on the abundances of the H₃⁺ isotopologs (Sipilä, Harju & Caselli subm.)
- we construct a new set of species-to-species rate coefficients based on the state-to-state rate coefficients calculated by Hugo et al. (2009)
- we find that the new model produces the kind of behavior for H₂D⁺ and D₂H⁺ that we expected based on the simple test in Harju et al. (2017)
- the new rates *decrease* deuteration at high density and for T > 10 K

MPE

abundances at $n(H_2) = 10^6 \text{ cm}^{-3}$, T = 10 - 20 K

- the spin states of H₂D⁺ and D₂H⁺ can be useful as tracers of the chemical age of cold and dense gas
- the main problem is the detection of $p-H_2D^+$ and $o-D_2H^+$
- a survey during SOFIA Cycle 4 produced no detections of p-H₂D⁺ (sources too warm?); we are continuing the search in Cycle 5
- ongoing and future work: species-to-species rate coefficients for the H₃⁺ + H₂ system, spin-state chemistry in hydrodynamical simulations, ALMA observations of deuterated ammonia...