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Part I: Nuclear spin statistics in molecular spectra
Nuclear spin statistical weights gns

- Origin: Couple rovibrational to 
nuclear spin states to fulfill Paulis 
principle

- Result: Change intensities of 
molecular transitions

Example: 
a)  14N12C12C14N, ratio 1/2 for e/o J
d)  15N12C12C14N, ratio 1/1 for e/o J

from Bunker/Jensen Molecular symmetry and 

Spectroscopy, NRC Research press 2006
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Where do these weights come from? Symmetry!

- Two types of symmetry: Permutation and rotational symmetry

- Permutation of identical nuclei (CNP group) -- Spin-statistical weights

- Rotation of nuclear spin (SO(3), rotation group) -- total spin quantum number

Example: molecular hydrogen H2

gns(B)=3

gns(A)=1

ψmol= ψel ψrovib ψnspin
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H2 is simple, what about more nuclei?

Spin configurations

total spin
exchange 
symmetry

Representation theory

total spin
exchange 
symmetry

calculate all possibilities directly

this talk

conventional approach
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What can representation theory tell us?

The nuclear spin wave function of N identical particles of spin I spans a 

representation of the product group SN×U(2I+1)

Representation theory gives a simple prescription to find this!

I I I I
...

U(2I+1) U(2I+1) ...

SN×U(2I+1)

1)U є U(2I+1) leaves ψ ψ 2

invariant (U✝U=Id.)

2)P є SN describes 

permutation of particles
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Young diagrams for depicting representations
➢For permutation groups: 

Each particle represented by a box 

N boxes must be adjusted to 

p≤N rows, 

rows have λ1≥λ2≥...≥λp boxes

➢For unitary groups: 

Each spin represented by a box 

N boxes must be adjusted to 

p≤d rows, 

rows have λ1≥λ2≥...≥λp boxes
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Young diagrams for depicting representations
➢For permutation groups: 

Each particle represented by a box 

N boxes must be adjusted to 

p≤N rows, 

rows have λ1≥λ2≥...≥λp boxes

S3 Young diagram partition U(2) partition spin I

A1 (3,0,0) {3,0} 3/2

A2 (1,1,1) -- --

E (2,1,0) {2,1} 1/2

➢For unitary groups: 

Each spin represented by a box 

N boxes must be adjusted to 

p≤d rows, 

rows have λ1≥λ2≥...≥λp boxes

Example N=3:
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Schur-Weyl duality: The combination of both
The wave function of N identical spins I spans a representation, which is a 

combination of the same Young diagrams for SN and U(d=2I+1)

Example H3
+: S3 Young diagram partition U(2) partition spin I

A1 (3,0,0) {3,0} 3/2

E (2,1,0) {2,1} 1/2

½ ½ 

½ 

Joint representation: (3A1,{3})+(E,{2,1}) 
better known as: (3A1,I=3/2)+(E,I=1/2)
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Schur-Weyl duality makes life easier!
Setting up the Young diagrams for N particles is straightforward, 

as it is for large I!

Example D5
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Part II: Reactive collisions and selection rules
Spin selection rules play important role, e.g., in population of molecular states

Selection rules may change possible final states in reactions

Popular example: The ortho-to-para conversion in reactive collisions of H2

Our aim: 

Determine symmetry-based selection rules for reactive collisions
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Our example: Two pathways for same product

First guess: Symmetry of intermediate 

complex is decisive for symmetry of 

final states!

Initial: S3×S2 symmetry group

S2×S1×S2 group

Final: S3×S2 symmetry group

S5 group
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State-to-state “reactions”

S2 dim S3 dim S5 dim

A 1 A1 1 A1 1

B 1 A2 1 A2 1

E 2 G1 4

G2 4

H1 5

H2 5

I 6

Changing CNP irrep

ψ = ψrovib ψnspin

must at all times fulfill Pauli principle!

ψ𝐻5
+ψ𝐻2

× ψ𝐻3
+ ψ𝐻2

× ψ𝐻3
+

Conserved spin
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Spins and rovibrational functions
H2 Γnspin (3A,I=1) (B,0)

Γrovib B A

H3
+ Γnspin (4A1,3/2) (2E,2×1/2) 

Γrovib A2 E

H5
+ Γnspin (4G1,4×3/2) (2H1,5×1/2) (6A1,5/2)

Γrovib G2 H2 A2

S2 dim S3 dim S5 dim

A 1 A1 1 A1 1

B 1 A2 1 A2 1

E 2 G1 4

G2 4

H1 5

H2 5

I 6
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One example of reaction “pathway” for  Itot=3/2

rovibrational states

S2 S3 S5

A A1 A1

B A2 A2

E G1

G2

H1

H2

I
Ortho – 𝑯𝟐

Ortho – 𝑯𝟐

Ortho – 𝑯𝟐

Para – 𝑯𝟐
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Ortho-to-para conversion for different intermediates

Intermediate S5 symmetry Intermediate S2×S1×S2 group

P[Γrovib(H2) = B → A] = 9/50 P[Γrovib(H2) = B → A] = 4/135

Different ortho-to-para transition rate depending on internal 

symmetry!
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Conclusion: Unified symmetries and symmetry dependent 
pathways 
Part I:

- Calculation of symmetry of nuclear spin wave function simplified

- Intimate correlation of unitary (spin) and permutation symmetry

- No one-to-one correspondence for I>1/2

Part II:

- Reaction “pathways” depend on symmetry of intermediate complex

- Symmetry selection rules and state-to-state reaction rates differ

- Used results of Part I to simplify calculations
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And now? The open questions
- Use correlation of spin and permutation for large molecules?

- Use correlation for molecules with different nuclei

- What about I>1/2 in reactions involving deuterated species?

- Does the unitary symmetry group influences selection rules? 

- Hint: No one-to-one correspondence of unitary symmetry and I, 
which one is conserved?
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