Unified rotational and permutational symmetry and selection rules in reactive collisions

Nuclear spin effects in astrochemistry

Grenoble 2017

Hanno Schmiedt, University of Cologne, Germany

Part I: Nuclear spin statistics in molecular spectra

Nuclear spin statistical weights g_{ns}

- Origin: Couple rovibrational to nuclear spin states to fulfill Paulis principle
- Result: Change intensities of molecular transitions

Example:
a) ${ }^{14} \mathrm{~N}^{12} \mathrm{C}^{12} \mathrm{C}^{14} \mathrm{~N}$, ratio $1 / 2$ for e/o J
d) ${ }^{15} \mathrm{~N}^{12} \mathrm{C}^{12} \mathrm{C}^{14} \mathrm{~N}$, ratio $1 / 1$ for e/o J

Where do these weights come from? Symmetry!

$$
\psi_{\mathrm{mol}}=\psi_{\mathrm{el}} \psi_{\mathrm{rovib}} \Psi_{\mathrm{nspin}}
$$

- Two types of symmetry: Permutation and rotational symmetry
- Permutation of identical nuclei (CNP group) -- Spin-statistical weights
- Rotation of nuclear spin (SO(3), rotation group) -- total spin quantum number

Example: molecular hydrogen H_{2}

Configuration	\boldsymbol{S}_{2}-symmetry	$\boldsymbol{I}_{\text {tot }}$	$\boldsymbol{M}_{\boldsymbol{I}}$
$\uparrow \uparrow$	A	1	1
$\downarrow \downarrow$	A	1	-1
$\uparrow \downarrow+\downarrow \uparrow$	A	1	0
$\uparrow \downarrow-\downarrow \uparrow$	B	0	0

H_{2} is simple, what about more nuclei?

What can representation theory tell us?

1) $U \in U(2 I+1)$ leaves $|\langle\psi \mid \psi\rangle|^{2}$ invariant ($\mathrm{U}^{+} \mathrm{U}=\mathrm{Id}$.)
2) $P \in S_{N}$ describes permutation of particles

$\mathrm{S}_{\mathrm{N}} \times \mathrm{U}(2 \mathrm{I}+1)$

The nuclear spin wave function of N identical particles of spin I spans a representation of the product group $\mathrm{S}_{\mathrm{N}} \times \mathrm{U}(2 \mathrm{I}+1)$

Representation theory gives a simple prescription to find this!

Young diagrams for depicting representations

คFor permutation groups:
Each particle represented by a box N boxes must be adjusted to $\mathrm{p} \leq \mathrm{N}$ rows,
rows have $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\mathrm{p}}$ boxes
\& For unitary groups:
Each spin represented by a box N boxes must be adjusted to $\mathrm{p} \leq \mathrm{d}$ rows,
rows have $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\mathrm{p}}$ boxes

Young diagrams for depicting representations

>For permutation groups:
Example $\mathrm{N}=3$:

S_{3}	Young diagram		partition	U(2)	partition	spin I
A_{1}			$(3,0,0)$		$\{3,0\}$	3/2
A_{2}	\square		(1,1,1)		--	--
E			$(2,1,0)$		$\{2,1\}$	1/2

Each particle represented by a box
N boxes must be adjusted to $\mathrm{p} \leq \mathrm{N}$ rows,
rows have $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\mathrm{p}}$ boxes
\Rightarrow For unitary groups:
Each spin represented by a box N boxes must be adjusted to p \leq d rows,
rows have $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\mathrm{p}}$ boxes

Schur-Weyl duality: The combination of both

The wave function of N identical spins I spans a representation, which is a combination of the same Young diagrams for S_{N} and $\mathrm{U}(\mathrm{d}=2 \mathrm{I}+1)$

Example $\mathrm{H}_{3}{ }^{+}$:

S_{3}	Young diagram		partition	$\mathrm{U}(2)$	partition	spin /
A_{1}	\boxed{y}			$(3,0,0)$		$\{3,0\}$
	E				$3 / 2$	
				$\{2,1\}$	$1 / 2$	

Joint representation: better known as:

$$
\begin{gathered}
\left(3 \mathrm{~A}_{1},\{3\}\right)+(\mathrm{E},\{2,1\}) \\
\left(3 \mathrm{~A}_{1}, \mathrm{I}=3 / 2\right)+(\mathrm{E}, \mathrm{I}=1 / 2)
\end{gathered}
$$

Schur-Weyl duality makes life easier!

Setting up the Young diagrams for N particles is straightforward, as it is for large I!

Part II: Reactive collisions and selection rules

Spin selection rules play important role, e.g., in population of molecular states
Selection rules may change possible final states in reactions
Popular example: The ortho-to-para conversion in reactive collisions of H_{2}
Our aim:
Determine symmetry-based selection rules for reactive collisions

Our example: Two pathways for same product

First guess: Symmetry of intermediate complex is decisive for symmetry of final states!

State-to-state "reactions"

$$
\psi_{H_{2}} \times \psi_{H_{3}^{+}} \longrightarrow \psi_{H_{5}^{+}} \longrightarrow \psi_{H_{2}} \times \psi_{H_{3}^{+}}
$$

$$
\begin{aligned}
& \psi=\psi_{\text {rovib }} \psi_{\text {nspin }} \\
& \text { must at all times fulfill Pauli principle! }
\end{aligned}
$$

Changing CNP irrep
Conserved spin

S_{2}	dim	$\mathrm{~S}_{3}$	dim	$\mathrm{~S}_{5}$	dim
A	1	$\mathrm{~A}_{1}$	1	$\mathrm{~A}_{1}$	1
B	1	$\mathrm{~A}_{2}$	1	$\mathrm{~A}_{2}$	1
		E	2	G_{1}	4

Spins and rovibrational functions

H_{2}	$\Gamma_{\text {nspin }}$	(3A,I=1)	(B,0)	S_{2}	dim		dim	S_{5}	dim
	$\Gamma_{\text {rovib }}$			A		A_{1}	1	A_{1}	1
$\mathrm{H}_{3}{ }^{+}$	$\Gamma_{\text {new }}$	$\left(4 \mathrm{~A}_{1}, 3 / 2\right)$	($2 \mathrm{E}, 2 \times 1 / 2)$	B		A_{2}	1	A_{2}	1
	$\Gamma_{\text {rovib }}$			IE			2	G_{1}	4
		A_{2}	E				G		4
$\mathrm{H}_{5}{ }^{+}$	$\Gamma_{\text {nspin }}$	$\left(4 \mathrm{G}_{1}, 4 \times 3 / 2\right)$	$\left(2 \mathrm{H}_{1}, 5 \times 1 / 2\right)$	$\left(6 \mathrm{~A}_{1}, 5 / 2\right)$				H_{1}	5
	$\Gamma_{\text {rovib }}$	G_{2}			A_{2}			H_{2}	5
								11	6

One example of reaction "pathway" for $\mathrm{I}_{\text {tot }}=3 / 2$

S_{2}	$\mathrm{~S}_{3}$	$\mathrm{~S}_{5}$
A	$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$
B	$\mathrm{~A}_{2}$	$\mathrm{~A}_{2}$
	E	G_{1}
		G_{2}
		H_{1}
		H_{2}

rovibrational states

Ortho-to-para conversion for different intermediates

Intermediate S_{5} symmetry	Intermediate $S_{2} \times S_{1} \times S_{2}$ group
$\mathrm{P}\left[\Gamma_{\text {rovib }}\left(H_{2}\right)=\mathrm{B} \rightarrow \mathrm{A}\right]=9 / 50$	$\mathrm{P}\left[\Gamma_{\text {rovib }}\left(\mathrm{H}_{2}\right)=\mathrm{B} \rightarrow \mathrm{A}\right]=4 / 135$

Different ortho-to-para transition rate depending on internal symmetry!

Conclusion: Unified symmetries and symmetry dependent pathways

Part I:

- Calculation of symmetry of nuclear spin wave function simplified
- Intimate correlation of unitary (spin) and permutation symmetry
- No one-to-one correspondence for I>1/2

Part II:

- Reaction "pathways" depend on symmetry of intermediate complex
- Symmetry selection rules and state-to-state reaction rates differ
- Used results of Part I to simplify calculations

And now? The open questions

- Use correlation of spin and permutation for large molecules?
- Use correlation for molecules with different nuclei
- What about I $>1 / 2$ in reactions involving deuterated species?
- Does the unitary symmetry group influences selection rules?
- Hint: No one-to-one correspondence of unitary symmetry and I, which one is conserved?

Thank you for your attention

Thanks to Stephan Schlemmer, Per Jensen, and the whole group in Cologne!

Funding: DFG, SFB 956, BCGS

Schmiedt et al., JCP 145, 074301 (2016)

Bonn-Cologne Graduate School of Physics and Astronomy

