Unified rotational and permutational symmetry and selection rules in reactive collisions

Nuclear spin effects in astrochemistry Grenoble 2017

Hanno Schmiedt, University of Cologne, Germany

Part I: Nuclear spin statistics in molecular spectra

Nuclear spin statistical weights g_{ns}

- Origin: Couple rovibrational to nuclear spin states to fulfill Paulis principle
- Result: Change intensities of molecular transitions

Example:

a) ¹⁴N¹²C¹²C¹⁴N, ratio 1/2 for e/o J d) ¹⁵N¹²C¹²C¹⁴N, ratio 1/1 for e/o J

from Bunker/Jensen Molecular symmetry and Spectroscopy, NRC Research press 2006

Where do these weights come from? Symmetry! $\psi_{mol} = \psi_{el} \psi_{rovib} \psi_{nspin}$

- Two types of symmetry: Permutation and rotational symmetry
 - Permutation of identical nuclei (CNP group) -- Spin-statistical weights
 - Rotation of nuclear spin (SO(3), rotation group) -- total spin quantum number

Exam	nple: molecular h	nydrogen	H_2	
Configuration	S ₂ -symmetry	I _{tot}	M_I	
$\uparrow \uparrow$	Α	1	1	
$\downarrow\downarrow$	A	1	-1 - g	$g_{ns}(B)=3$
$\uparrow \downarrow + \downarrow \uparrow$	A	1	0	
$\uparrow \downarrow - \downarrow \uparrow$	В	0	0 } g	$g_{ns}(A)=1$

H. Schmiedt/Cologne

H₂ is simple, what about more nuclei?

What can representation theory tell us?

1) U \in U(2I+1) leaves $|\langle \psi | \psi \rangle|^2$ invariant (U⁺U=Id.)

2) P \in S_N describes permutation of particles

The nuclear spin wave function of N *identical* particles of spin I spans a representation of the product group $S_N \times U(2I+1)$

Representation theory gives a simple prescription to find this!

Young diagrams for depicting representations

\succ For permutation groups:

Each particle represented by a box N boxes must be adjusted to $p \le N$ rows, rows have $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p$ boxes

► For unitary groups: Each spin represented by a box N boxes must be adjusted to $p \le d$ rows, rows have $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p$ boxes

Young diagrams for depicting representations

Lxample N=3.						
S ₃	Young diagram	partition	U(2)	partition	spin I	
A ₁		(3,0,0)		{3,0}	3/2	
A ₂		(1,1,1)	~			
E		(2,1,0)	-	{2,1}	1/2	

Example N-2:

► For permutation groups:

Each particle represented by a box N boxes must be adjusted to $p \le N$ rows,

rows have $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p$ boxes

► For unitary groups: Each spin represented by a box N boxes must be adjusted to p≤d rows,

rows have $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p$ boxes

Schur-Weyl duality: The combination of both

The wave function of N identical spins I spans a representation, which is a combination of the *same* Young diagrams for S_N and U(d=2I+1)

Joint representation: better known as: $(3A_1, \{3\}) + (E, \{2, 1\})$ $(3A_1, I=3/2) + (E, I=1/2)$

Schur-Weyl duality makes life easier!

Setting up the Young diagrams for N particles is straightforward, as it is for large I!

Example D _r	Young diagram	U(3)	SO(3)	S_5	Label
		{5,0,0}	5,3,1	(5,0)	A_1
		{4,1,0}	4,3,2,1	(4,1)	G_1
		{3, 2, 0}	3,2,1	(3,2)	H_1
		{3, 1, 1}	2,0	(3,1 ²)	I
		{2,2,1}	1	(2 ² ,1)	H_2

Part II: Reactive collisions and selection rules

Spin selection rules play important role, e.g., in population of molecular states

Selection rules may change possible final states in reactions

Popular example: The ortho-to-para conversion in reactive collisions of H₂

Our aim:

Determine symmetry-based selection rules for reactive collisions

Our example: Two pathways for same product

First guess: Symmetry of intermediate complex is decisive for symmetry of final states!

State-to-state "reactions"

$$\psi_{H_2} \times \psi_{H_3^+} \longrightarrow \psi_{H_5^+} \longrightarrow \psi_{H_2} \times \psi_{H_3^+}$$

$\psi = \psi_{\text{rovib}} \psi_{\text{nspin}}$			S ₂	dim	^I S ₃	dim	S ₅	dim
must at all times fulfill Pauli principle!			А	1	A ₁	1	A ₁	1
]	В	1	A2	1	A2	1
					I I E	2	G1	4
Changing CNP irrep	Conserved spin					-	G ₂	4
							Η ₁	5
							H ₂	5
							 	6
							H Schm	iedt/Coloane

Spins and rovibrational functions

H ₂	Γ _{nspin}	(3A,I=1)	(B,0)		S ₂	dim	S ₃	dim	S ₅	dim
	Γ _{rovib}	В	А		А	1	A ₁	1	Α ₁	1
H ₃ +	Γ _{nsnin}	$(4A_1,3/2)$	(2E,2×1/2)		В	1	A2	1	A ₂	1
	пэрш						E	2	G ₁	4
	Γ _{rovib}	A ₂	E						G ₂	4
H ₅ +	$\Gamma_{\rm nspin}$	$(4G_1, 4 \times 3/2)$	(2H ₁ ,5×1/2)		(6A	A ₁ ,5/2))		I I H ₁	5
	Γ _{rovib}	G ₂	H ₂			A_2			H ₂	5
	1			1						6

One example of reaction "pathway" for $I_{tot}=3/2$

rovibrational states

Ortho-to-para conversion for different intermediates

Intermediate S ₅ symmetry	Intermediate $S_2 \times S_1 \times S_2$ group
$P[\Gamma_{\text{rovib}}(H_2) = B \rightarrow A] = 9/50$	$P[\Gamma_{\text{rovib}}(H_2) = B \rightarrow A] = 4/135$

Different ortho-to-para transition rate depending on internal symmetry!

Conclusion: Unified symmetries and symmetry dependent pathways

Part I:

- Calculation of symmetry of nuclear spin wave function simplified
- Intimate correlation of unitary (spin) and permutation symmetry
- No one-to-one correspondence for I>1/2

Part II:

- Reaction "pathways" depend on symmetry of intermediate complex
- Symmetry selection rules and state-to-state reaction rates differ
- Used results of Part I to simplify calculations

And now? The open questions

- Use correlation of spin and permutation for large molecules?
- Use correlation for molecules with different nuclei
- What about I>1/2 in reactions involving deuterated species?
- Does the unitary symmetry group influences selection rules?
- *Hint:* No one-to-one correspondence of unitary symmetry and I, which one is conserved?

Thank you for your attention

Thanks to Stephan Schlemmer, Per Jensen, and the whole group in Cologne!

Funding: DFG, SFB 956, BCGS

Bonn-Cologne Graduate School of Physics and Astronomy

Schmiedt et al., JCP **145**, 074301 (2016)