H_n^+

Introduction

 $H_2+H_3^+$ exchange reaction

Reactions with barriers

Conclusions

Ortho/para conversion of H_3^+ in collisions with H_2 and H

Octavio Roncero

Inst. Física Fundamental, CSIC

octavio.roncero@csic.es

Introduction ●○○	H_n^+ PES's	H ₂ +H ⁺ ₃ exchange reaction	Reactions with barriers	Conclusions
Outline				

2 H $_n^+$ PES's

3 $H_2+H_3^+$ exchange reaction

Reactions with barriers
 H+H⁺₃ exchange reaction
 COM's with OH

5 Conclusions

 H_n^+ PES's

Introduction

000

 $H_2+H_3^+$ exchange reaction

Reactions with barriers

Conclusions

Hydrogen in Universe

- Hydrogen is \approx 90 % of the mass of Universe
- The most abundant ion is H_3^+ :
 - Participate in the formation cycle of many molecules at low T
 - Absence of many reaction rate constants

 $H_3^+ + HD \rightarrow H_2D^+ + H_2$

Deuterated species > D quantity

- Formation: $H_2 + H_2^+ \rightarrow H_3^+ + H$
- Quantum behaviour and low temperatures

Introduction	H_n^+ PES's	$H_2+H_3^+$ exchange reaction	Reactions with barriers	Conclusions
Ortho/n	ara H ⁺			

Differences between ortho/para energies at low T

చ

• Nuclear spin is non-separable for three particles But Full symmetry as: $\Gamma^{Spin} \times \Gamma^{Rovib}$ For H₃⁺ this is possible using hyperspherical coor. Bound states: Aguado et al. ('00) Collisions: Honvault et al. ('06,...) For larger systems ?

Introduction	H_n^+ PES's $\bullet \circ \circ$	$H_2+H_3^+$ exchange reaction	Reactions with barriers	Conclusions
Outline				

Introduction

3) $H_2+H_3^+$ exchange reaction

Reactions with barriers
 H+H⁺₃ exchange reaction
 COM's with OH

5 Conclusions

- Long interaction to describe low temperature

Introduction	H_n^+ PES's	$H_2+H_3^+$ exchange reaction \bullet 000000000	Reactions with barriers	Conclusions
Outline				

Introduction

2 H $_n^+$ PES's

Reactions with barriers H+H⁺₃ exchange reaction COM's with OH

Conclusions

H_3^+ + $H_2 \rightarrow H_2$ + H_3^+ exchange reaction

- Production of H₂D⁺
- Ortho/para conversion of H⁺₃
- Large Zero Point energy

 $(HHH)^+ + HH \rightarrow (HHH)^+ + HH \qquad \text{inelastic} \\ \rightarrow HH + (HHH)^+ \qquad \text{hop: } 3 \text{ channels} \\ \rightarrow HH + (HHH)^+ \qquad \text{exchange: } 6 \text{ channels}$

Each pathway obeys strict nuclear spin selection rules Cordonnier et al. (10) This allows to "infer" the hop/exchange ratio: $\alpha = k^H/k^E$ Crabtree et al. (11)

Introduction H_n^+ PES's $H_2 + H_3^+$ exchange reactionReactions with barriers0000000000000000000000

 H_3^+ + $H_2 \rightarrow H_2$ + H_3^+ exchange reaction

 $(HHH)^+ + HH \rightarrow (HHH)^+ + HH$ inelastic $\rightarrow HH + (HHH)^+$ hop : 3 channels $\rightarrow HH + (HHH)^+$ exchange : 6 channels

Each pathway obeys strict nuclear spin selection rules Cordonnier et al. (10) This allows to "infer" the hop/exchange ratio: $\alpha = k^H/k^E$ Crabtree et al. (11)

Octavio Roncero

Nuclear Spin Effects in AstroPhysics, Grenoble, Abril 2-4th 2017

Conclusions

H₂+H₃⁺ exchange reaction Introduction H_n^+ PES's 0000000000

Reactions with barriers

Conclusions

hop/exchange ratio, α , and statistical behaviour

 α inferred from observed p-H₃⁺ fraction vs. p-H₂ enrichment

Expt. 1: Crabtree et al. JCP ('11) Expt. 2: Cordonnier et al. JCP ('00)

H⁺₅ complex lives enough to allow full scrambling

Statistical limits:

Hugo et al.('09)

- no scrambling $S_M = \{1/4, 3/4, 0\}$ $\alpha = \infty$
- full scrambling $S_M = \{1/10, 3/10, 6/10\}$ $\alpha = 0.5$

Need of dynamics to describe transition

Octavio Roncero

Introduction H_n^+ PES's $H_2 + H_3^+$ exchange reactionReactions with barriersConclusions00000000000000000000000000

Proton hop: direct mechanism

Double well for proton hop: barrier $< 100 \text{ cm}^{-1}$

Stabilization of the complex

 $\begin{array}{l} \mbox{Rotation of } \mbox{H}_2 \mbox{ subunit with Scrambling barrier} < 1500 \mbox{ cm}^{-1} \\ & \approx 1500 \mbox{ cm}^{-1} \mbox{ below } \mbox{H}_2 \mbox{ + } \mbox{H}_3^+ \mbox{ asymptotic energy} \end{array}$

Octavio Roncero

Beyond Pure Statistical Models

• Need of dynamics to describe α transition

- Many degree of freedom (10D)
- Low energy and long-lived resonances
- All atoms are equivalent: NO reduced dimension models
- Quantum and many semiclassical methods difficult
- Introduce dynamical Bias through determination of S_M using Quassi-classical trajectories

Gómez-Carrasco et . al. JCP 137, ('12), 094303

H_2 + H_3^+ : Statistical model of Park & Light, JCP ('07)

For total angular momentum, *J*, and nuclear spin, *I*, the reaction probability $P_{sr,M's'r'}^{JI\Omega}(E) = \frac{g_{Is} \gamma_{sIs'}^{M'} W_{sr\nu\Omega_t}^{J\Omega}(E) W_{s'r'\nu'\Omega'_t}^{J\Omega}(E)}{\sum^{''} \gamma_{sIs''}^{M'} W_{s''r''\nu''\Omega'_t}^{J\Omega}(E)}$

- 1. Nuclear spin statistical weight matrix, g
- 2. Capture probability, $W_{sr\nu\Omega_t}^{J\Omega}$: Using full PES
- 3. Spin branching ratio matrices, $\gamma_{sIs'}^{M'}$
- 4. Scrambling matrix, $S_M = \{1/10, 3/10, 6/10\}$

$$(HHH)^{+} + HH \rightarrow (HHH)^{+} + HH \qquad \text{inelastic} \\ \rightarrow HH + (HHH)^{+} \qquad \text{hop: 3 channels} \\ \rightarrow HH + (HHH)^{+} \qquad \text{exchange: 6 channels}$$

H_2 + H_3^+ : Statistical model of Park & Light, JCP ('07)

For total angular momentum, *J*, and nuclear spin, *I*, the reaction probability $P_{sr,M's'r'}^{JI\Omega}(E) = \frac{g_{Is} \gamma_{sIs'}^{M'} W_{sr\nu\Omega_t}^{J\Omega}(E) W_{s'r'\nu'\Omega'_t}^{J\Omega}(E)}{\sum^{''} \gamma_{sIs''}^{M'} W_{s''r''\nu''\Omega'_t}^{J\Omega}(E)}$

- 1. Nuclear spin statistical weight matrix, g
- 2. Capture probability, $W_{sr\nu\Omega_t}^{J\Omega}$: Using full PES
- 3. Spin branching ratio matrices, $\gamma_{sIs'}^{M'}$
- 4. Scrambling matrix, S_M from dynamical calculations

$$(HHH)^{+} + HH \rightarrow (HHH)^{+} + HH \qquad \text{inelastic} \\ \rightarrow HH + (HHH)^{+} \qquad \text{hop: } 3 \text{ channels} \\ \rightarrow HH + (HHH)^{+} \qquad \text{exchange: } 6 \text{ channels}$$

QCT Dynamically biased S_M and ZPE

 $S_M(E) = \text{QCT prob.}$

• α too high!!

ZPE favors direct hop mechanism

Introduction H_n^+ PES's

 $H_2+H_3^+$ exchange reaction

Reactions with barriers

Conclusions

QCT Dynamically biased S_M and ZPE

 $S_M(E) = \text{QCT prob.}$ $\text{ZPE}_{H_2} + \text{ZPE}_{H_3^+} = 6538 \approx \text{ZPE}_{H_5^+} = 7167 \text{ cm}^{-1}$

ZPE reduction: Manikandan & Hase ('12)

Octavio Roncero

Nuclear Spin Effects in AstroPhysics, Grenoble, Abril 2-4th 2017

 $\begin{array}{cccc} \text{Introduction} & \text{H}_n^+ \mbox{PES's} & \text{H}_2 + \text{H}_3^+ \mbox{exchange reaction} & \mbox{Reactions with barriers} & \mbox{Conclusions} \\ 000 & 000 & 0000000 \bullet 0 & 0000000 & 000 \\ \end{array}$

Comparison with Experiments

Expt. 1: Crabtree, *et al.*, J. Chem. Phys., **134**, ('11) Expt. 2: Cordonnier, *et al.*, J. Chem. Phys., **113**, ('00) Simul. Gómez-Carrasco *et al* J. Chem. Phys., ('12)

- ZPE plays a fundamental role
- ZPE-biased "works" at T > 300 K
- Statistical behaviour at T< 200 K
- Need of quantum treatments
- Direct experimental information in infrared predissociation spectra

Experiments by Cheng et al. JPCI ('10)

Ring Polymer Molecular Dynamics: Ceriotti, et al. JCP (10)

To include Zero Point Energy

The ussual approach is for reactions with barriers

with Yuri Suleimanov

Here implemented in two steps:

1) Equilibration:

2) Direct dynamics of polymers:

Problems:

- Thermalized results: no state-to-state resolution
- At low temperatures (100K) very long trajectories

Ring Polymer Molecular Dynamics: Ceriotti, et al. JCP (10)

To include Zero Point Energy

The ussual approach is for reactions with barriers

with Yuri Suleimanov

Here implemented in two steps:

1) Equilibration:

2) Direct dynamics of polymers:

Problems:

- Thermalized results: no state-to-state resolution

- At low temperatures (100K) very long trajectories

Ring Polymer Molecular Dynamics: Ceriotti, et al. JCP (10)

To include Zero Point Energy

The ussual approach is for reactions with barriers

Here implemented in two steps:

1) Equilibration:

2) Direct dynamics of polymers:

Problems:

- Thermalized results: no state-to-state resolution
- At low temperatures (100K) very long trajectories

Introduction	H_n^+ PES's	$H_2+H_3^+$ exchange reaction	Reactions with barriers ●○○○○○○	Conclusions
Outline				

1 Introduction

- 2 H $_n^+$ PES's
- 3 $H_2+H_3^+$ exchange reaction

Reactions with barriers

H+H⁺₃ exchange reaction
COM's with OH

Conclusions

Introduction H_n^+ PES's $H_2 + H_3^+$ exchange reactionReactions with barriersConclusions000000000000000

 $H + H_3^+ \rightarrow H_3^+ + H$ exchange: MEP and PES

 $ABC^+ + D \rightarrow ABC^+ + D \rightarrow \text{inelastic}$

 $\left. \begin{array}{c} BCD^+ + A \\ ACD^+ + B \\ ABD^+ + C \end{array} \right\} \text{ exchange}$

Planar TS and well

Octavio Roncero

Introduction H_n^+ PES's $H_2+H_3^+$ exchange reaction Reactions with barriers conclusions occ

$H + H_3^+ \rightarrow H_3^+ + H$ exchange: cross section

• σ increases with decreasing *E* below the TS.

in agreement with Moyano, Pearson Collins ('04) for E>>

- Reactive trajectories are correlated to long time propagations associated to the formation of a H_4^+ complex
- need of experimental or quantum results to confirm
- \bullet Similar to reactions of COM's with OH

 $\begin{array}{ccc} \mathsf{H}_n^+ \ \mathsf{PES's} & \mathsf{H}_2\mathsf{+}\mathsf{H} \\ \mathfrak{000} & \mathfrak{0000} \end{array}$

H₂+H⁺₃ exchange reaction

Reactions with barriers

Conclusions

Chemisty at Cold Interstellar Clouds

Experiments on "Accelerated chemistry at low temperatures" for CH₃OH + OH

Shannon *et al.* Nature Chem. ('13) Gómez Martín *et al.* J. Phys. Chem.A ('14)

Antiñolo et al. ApJ ('16)

Introduction

Use of TST including tunneling

 H_n^+ PES's $H_2+H_3^+$ exchange reaction

Reactions with barriers

Conclusions

Chemisty at Cold Interstellar Clouds

Experiments on "Accelerated chemistry at low temperatures" for CH₃OH + OH

Shannon *et al.* Nature Chem. ('13) Gómez Martín *et al.* J. Phys. Chem.A ('14)

Antiñolo et al. ApJ ('16)

Introduction

- Use of TST including tunneling
- CH₃OH + OH Imaginary frequency at TST unrealistic

Siebrand et al. PCCP ('16)

Reactivity due to dimer formation

• New experiments on H₂CO+OH

for 20 < T < 100 K

Ocaña et al. (in prep.)

barrier of 0.02 eV

Introduction

 H_n^+ PES's

 $H_2+H_3^+$ exchange reaction

Reactions with barriers

Conclusions

PES: IRC and long range check

 H_n^+ PES's $H_2+H_3^+$ exchange reaction

Reactions with barriers

Conclusions

Reactive cross sections: QCT treatment

 $\mathsf{OH} \text{ (j=0) +} \mathsf{H}_2 \mathsf{CO} \text{ (J=0)} \rightarrow \mathsf{HCO} + \mathsf{H}_2 \mathsf{O}$

•
$$\sigma(E) = \pi \quad b_{max}^2 \quad P_r(E)$$

• $\sigma(E)$ increases below TS!!

Introduction

$\mathsf{OH} \text{ (j=0) +} \mathsf{H}_2\mathsf{CO} \text{ (J=0)} \rightarrow \mathsf{HCO} + \mathsf{H}_2\mathsf{O}$

Long range interaction

 $V(R \to \infty) = A/R^3$

The two dipoles re-orient at very long distances

Assuming a capture model

 $b_{max} = \sqrt{3} (A/2E)^{1/3}$

Levine & Bernstein in "Molecular Reaction Dynamics"

Introduction	H_n^+ PES's	$H_2+H_3^+$ exchange reaction	Reactions with barriers	Conclusions •oo
Outline				

1 Introduction

- 2 H $_n^+$ PES's
- 3 $H_2+H_3^+$ exchange reaction
- Reactions with barriers
 H+H⁺₃ exchange reaction
 COM's with OH

5 Conclusions

- H₂+ H₃⁺ collisions: α ratio presents a transition from statistical behaviour at T< 200K and a more direct mechanism at T> 300 K. Need of Quantum methods to study this transition & to understand the statistical behaviour at low temperatures, due to long-lived resonances
- Ring Polymer Molecular Dynamics is a promising method Still challenging for low T
- H+ H₃⁺ exchange reaction cross section, with a barrier (of 0.15 eV) H₂CO+OH rate, also with a barrier (of 0.02 eV), studied with classical methods increase at low temperature Capture at low energies, non TST valid for dynamics far from IRC
- Experimental evidence in the case of reactions of COM's with OH Need of Quantum methods for large systems and low energies

Acknowlegments					
Introduction	H_n^+ PES's	$H_2+H_3^+$ exchange reaction	Reactions with barriers	Conclusions ○○●	

Collaborators

Alfredo Aguado, Univ. Autónoma Madrid Cristina Sanz-Sanz, Univ. Autónoma Madrid Susana Gómez-Carrasco, Univ. Salamanca Alexandre Zanchet, IFF-CSIC Pablo del Mazo, IFF-CSIC Fedor Y. Naumkin, Univ. Toronto Yury Suleimanov, chyprus Institute

Financial Support

Ministerio Ciencia y Tecnología (SPAIN)

CSD2009-00038, "The Herschel and Alma era" FIS2014-52172-C02

European Research Council:"NanoCosmos"

COST CM-1401: "Our Molecular Universe"