Spin statistics of triatomic hydrides

David Neufeld (Johns Hopkins and ENS*),

*pendant le mois de Mai....

Outline

I'll discuss 2 things:

Chloronium (H₂Cl⁺)
Observed OPR ~ 3
(high-T equilibrium)

2) Trihydrogen cation (H_3^+) Observed OPR ~ 0.4 – 1 $(T_{spin} \text{ can be as low as ~ 20 K})$

Outline

Chloronium (H₂Cl⁺)

Observed OPR ~ 3 (high-T equilibrium)

Chloronium (H₂Cl⁺)

- Discovered with Herschel/HIFI (Lis et al. 2010)
- Asymmetric top (isoelectronic with H₂S)
- Ground state 0₀₀ has nuclear spin 0
- Lowest ortho-state 1_{01} is 14.6 cm⁻¹ above 0_{00}
- Equilibrium OPR ~ 3 above ~ 40 K
- In low temperature limit OPR ~ $9 \exp(-20.2 \text{K}/T)$

Chloronium observations with Herschel toward W49N

Neufeld et al. (2015, ApJ)

Chloronium observations with Herschel toward W49N

Neufeld et al. (2015, ApJ)

Formation via the exothermic reactions: $Cl^+ + H_2 \rightarrow HCl^+ + H$ R1 $HCl^+ + H_2 \rightarrow H_2Cl^+ + H$ R2

If the scrambling limit applies for R2, then the OPR for H₂Cl⁺ reflects that of H₂

 $HCI^{+} + o - H_{2} \rightarrow o - H_{2}CI^{+} + H \qquad 5/6$ $\rightarrow p - H_{2}CI^{+} + H \qquad 1/6$ $HCI^{+} + p - H_{2} \rightarrow o - H_{2}CI^{+} + H \qquad 1/2$ $\rightarrow p - H_{2}CI^{+} + H \qquad 1/2$

Formation OPR = OPR₀ = $\frac{5 \text{ OPR } (H_2) + 3}{\text{ OPR } (H_2) + 3}$

The actual H₂Cl⁺ OPR depends on the relevant timescales for destruction (via dissociative recombination) and ortho-para conversion via

 $o - H_2CI^+ + H \leftrightarrow p - H_2CI^+ + H$

 $OPR(H_{2}CI^{+}) = x OPR_{LTE}(H_{2}CI^{+}) + (1 - x) OPR_{0}(H_{2}CI^{+})$ where x = $\frac{k_{op}n(H)}{k_{op}n(H) + k_{dr}n_{e}}$ (assumes DR rate same for o – and p – H₂CI⁺)

Observed H₂Cl⁺

Assuming that H_2CI^+ exists in a region with T > 30 K, the observed H_2CI^+ > 2.5 implies

 Scrambling mechanism does not apply and/or
T > 110 K so that OPR_{LTE}(H₂) > 1.8 and/or
Ortho-para conversion is rapid with

 $k_{op} > 1.5 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$

Outline

Trihydrogen (H₃⁺)

Observed OPR ~ 0.4 - 1(T_{spin} can be as low as ~ 20 K)

Observed H₃⁺ and H₂ OPRs

Observed H₃⁺ and H₂ OPRs

Observations indicate $T_{spin}(H_3^+) < T_{spin}(H_2)$

Various effects have been included in models State selective DR rates Time dependence Enhanced CR ionization rates In general, models overpredict T_{spin}(H₃⁺) (recall Kyle Crabtree's talk)

Even if ortho-para conversion is very rapid, and the OPRs are everywhere in LTE,

 $T_{spin}(H_2)$ does not have to equal $T_{spin}(H_3^+)$, because clouds are not isothermal

Averaging over this cloud, we find

 $T_{spin} (H_2) = 43 \text{ K}$

 $T_{spin} (H_3^+) = 29 \text{ K}$

This effect goes in the right direction

Averaging over this cloud, we find

 $T_{spin} (H_2) = 43 K$

 $T_{spin} (H_3^+) = 29 \text{ K}$

This effect goes in the right direction

However, these cloud parameters overpredict $N(H_2)$ and underpredict $N(H_3^+)$

Decreasing A_V to 2, we find

 $T_{spin} (H_2) = 51 \text{ K}$ $T_{spin} (H_3^+) = 45 \text{ K}$

However, these cloud parameters overpredict $N(H_2)$ and underpredict $N(H_3^+)$

Decreasing A_V to 2, we find

 $T_{spin} (H_2) = 51 \text{ K}$ $T_{spin} (H_3^+) = 45 \text{ K}$

And now increasing the CRIR to $3 \times 10^{-16} \text{ s}^{-1}$ as well

 $T_{spin} (H_2) = 57 \text{ K}$ $T_{spin} (H_3^+) = 56 \text{ K}$

And now increasing the CRIR to 3 x 10⁻¹⁶ s ⁻¹ as well

 $T_{spin} (H_2) = 57 \text{ K}$ $T_{spin} (H_3^+) = 56 \text{ K}$

We still need to do a complete parameter study, but it's not clear that this effect can account for the observed H₃⁺ spin temperature when all relevant observational constraints (e.g. $N(H_2)$, $N(H_3^+)$) are considered