What do we know about time scales for the nuclear spin conversion in molecular ices and at the solid-gas interface?

Xavier Michaut

SPICES Group "Spins & Photons in Interaction with ICES" Pole "Molecules in the Universe" – LERMA - PARIS

Co-authors

T. Putaud, A. Moudens, L. Philippe, P. Jeseck, M. Bertin, J.-H. Fillion

P. Cacciani, J. Cosléou

P. Cermak

C. Pardanaud

Nuclear Spin Effects in Astrochemistry2017 – Wednesday, May, 3rd , 2017

OPR of H₂O vs T in Ar matrix and in gas phase

Ortho-Para conversion dynamics with no proton exchange

OPR vs T at equilibrium for isolated molecules often used to define Spin Temperature.

Ortho-Para conversion dynamics with no proton exchange

OPR vs T at equilibirum for isolated molecules often used to define Spin Temperature.

Ortho-Para transition probability

depend :

-on state of matter (solid, gas, surface interaction)

-density, temperature

-sources of inhomogeneous magnetic fields at the molecular scale

Environment can change all these parameters

One approach : calculations in gas phase

Cacciani et al PRA 80 (2009), PRA 85 (2012)

One approach : calculations in gas phase

Calculations

-give τ = 10⁺⁴ – 10⁺⁷ years for H₂CO between 5 and 100 K in dilute media (n(H₂)=10⁵-10⁸ cm⁻³) (see Tudorie *et al* A&A 453 (2006))

-give τ = 5 hours for H₂O at 10¹² cm⁻³ (10⁻⁶ mbars)

(similar to conditions close to the surface nucleus of comets)

- -do not take into account intermolecular magnetic interactions
- -do not give information about interactions with grains

One approach : calculations in gas phase

Calculations

-give τ = 10⁺⁴ – 10⁺⁷ years for H₂CO between 5 and 100 K in dilute media (n(H₂)=10⁵-10⁸ cm⁻³) (see Tudorie *et al* A&A 453 (2006))

-give τ = 5 hours for H₂O at 10¹² cm⁻³ (10⁻⁶ mbars)

(similar to conditions close to the surface nucleus of comets)

-do not take into account intermolecular magnetic interactions

-do not give information about interactions with grains

Second approach : cold matrices experiments

The Sample :

- polycristalline
- Iow H₂O concentration
- thicknesses 50 et 500 μm

H₂O in Argon Matrix

H₂O in Argon Matrix

H₂O en matrice d'argon

Slow return to equilibrium after a fast cooling from 20 K

Time evolution of the rovibrational spectrum Bending mode region v_2 of H_2O

H₂O en matrice d'argon

Slow return to equilibrium after a fast cooling from 20 K

Time evolution of the rovibrational spectrum

Bending mode region v_2 of H_2O

Nuclear Spin Conversion

Time evolution of ortho/para pop.

H₂O in Argon Matrix

Behavior at Low Concentration $H_2O/Ar = 1/10000$

Time evolution of $x_0(t)$ for high concentration of H_2O in Ar matrix can not be fitted by a simple exponential function.

Results : H₂O in Argon Matrix

Origin of the magnetic coupling between Ortho and Para states

INTRAMOLECULAR Interactions

Spin-Rotation coupling

Cacciani *et al* Phys Rev A 80 (2009) & Phys Rev A 85 (2012)

> Turgeon *et al* J. Phs. Chem. A 121 (2017)

Patrick Ayotte

Invited talk : *Confinement and isotopic effects* Nuclear Spin Effect in Astrochemistry May, 2nd, 2017 Origin of the magnetic coupling between Ortho and Para states

INTERMOLECULAR Interactions

Spin-spin coupling

Fillion et al, ECLA proc.EAS Publications Series, 58 (2012)C. Pardanaud PhD thesis 2007Michaut *et al* (to be submitted)

• Fractional populations of *ortho* molecules:

$$x_O = \frac{n_O}{n_O + n_p}$$

• The time evolution of the number of *ortho* molecules can be expressed as:

$$\frac{dx_{o}}{dt} = -k_{1}x_{o}^{2} - k_{2}x_{o} - k_{3}$$

• The solution can be expressed as :

$$x_{o}(t) = \frac{x_{+} - x_{-}\varepsilon \exp\left(-k_{1}\sqrt{\beta^{2} + 4\gamma t}\right)}{1 - \varepsilon \exp\left(-k_{1}\sqrt{\beta^{2} + 4\gamma t}\right)}$$

Only one parameter to be adjusted

Michaut et al (to be submitted)

Extrapolation to ices

Can we extrapolate results in rare gas matrix to icy environment?

Intermolecular Magnetic Interactions In Ices

Calculations estimate the NSC to be few ms (Buntkowsky et al Z. Phys. Chem. 2008)

Fig. 3. Time dependence of the relative *para-* and *ortho-*H₂O concentrations for completely quenched tunnel splitting ($J_{H_2O}=0$ Hz). (a) Long time behavior. Oscillations are initially damped with a time constant T₂. (b) Initial part of the oscillations. Note that already after ca 100 µsec an efficient conversion has occurred.

Open Question

behavior at very low temperatures in the ice?

Experiments in molecular beams claim that conversion proceeds in few μ s in the water aggregates (Manca et al JPC 2013) : not confirmed by experiments performed with Jet-Ailes Team (IPR-LADIR-PhLAM-SOLEIL-Ailes beamline consortium) See Robert Georges' talk

para-CH₄ I=0 sym E

ortho-CH₄ I =1 sym F

Nuclear Spin Conservation during Solid formation

Temperature cooling of the gas during Solid formation

OPR evolution in the gas during Solid formation

Measurement of OPR at solid-gas interface

Vapor pressure measured between 40 and 70 K
Evolution of the pressure over 6 orders of magnitude

C. Pardanaud (in prep.)

Measurement of OPR at solid-gas interface

□ Measurement of OPR and OMR between 43 and 70 K

□ OPR and OMR equals to the expected values at equilibrium in gaseous phase (value close to the high limit value)

NSC during interaction with cold surface

behavior at very low temperatures on the iced surface?

Experiments $^{(1,2,3)}$ using REMPI spectroscopy to investigate released gas after desorption showed fast NSC in H₂ molecules trapped on cold Amorphous Solid Water (ASW).

- (1) Chehrouri, Fillion et al PCCP 2011 (2) Sugimoto & Fukutani Nature Physics 2011
- (3) Ueta, Watanabe, Hama, Kouchi PRL 2016

Nuclear Spin Conversion Dynamics on Surfaces

Probing the Molecular hydrogen on ASW using FTIR spectroscopy

Surfaces Processes & Ices (SPICES set-up)

H₂ adsorbed on ASW

Reflection Absorption InfraRed Spectrosopy (RAIRS)

Porous Amorphous Solid Water (ASW)

Solution

- **1000 ML Equivalent**
- □ Saturation of H₂

Time evolution of the RAIRS spectrum of H₂ /ASW

Nuclear Spin Conversion Dynamics on Surfaces

Molecular hydrogen on ASW

■ NSC in the presence of O₂ traces

Molecular Hydrogen Diffusion

Temperature 10 K

O ₂	t(min) IR Vib
0.2 %	
0.1 %	H ₂ : 30 (2)
0.02 %	
0 %	H ₂ : 220 (17)
Coverage	1 ML

- (1) Chehrouri, Fillion et al PCCP 2011
- (2) Sugimoto & Fukutani Nature Physics 2011
- (3) Ueta, Watanabe, Hama, Kouchi PRL 2016

Nuclear Spin Conversion Dynamics on Surfaces

CONCLUSIONS

Astronomical clock

Matrices Experiments

- well controlled environnement : reveals role of magnetic inter- and intra- molecular interactions
- importance of rotational structure
- importance of rotational relaxation

<u>Calculations in gas phase</u> -NSC strongly dependent on density and temperature 10⁺⁴ – 10⁺⁷ years for H₂CO between 5 and 100 K in dilute media (n(H₂)=10⁵-10⁸ cm⁻³) 5 hours close to surface nucleus of comets

Solid-gas Interface

Suggest a fast NSC in the solid state

Suggest a very slow NSC in a very diluted gas at low temperature Comparable to proton exchange ?

Open question

PROSPECTS

□ New Approaches : desorption studies

PROSPECTS

New Approaches : Enrichment techniques
Magnetic lensing

Patrick Ayotte Invited talk

Nuclear Spin Effect in Astrochemistry May, 2nd, 2017

Optical techniques

Acknowledgments

Acknowledgments

A. Moudens M. Bertin J.-H. Fillion

L. Philippe

G. Féraud

P. Jeseck

SPICES BOY

Y. Peperstraete

COSPINU BO

Colleagues of Jet-AILES Consortium

R. Georges, P. Roy, P. Asselin, P. Soulard, O. Pirali, M. Goubet, T. Huet

P. Cacciani

C. Pardanaud

C. Martin

Thank you for your attention!!

