OPR in Water in the Interstellar Medium

Darek Lis (LERMA)

Thomas Putaud, X. Michaut, F. Le Petit, E. Roueff, J.-H. Fillion Grenoble, May 2, 2017

Observatoire

van Dishoeck et al. 2013

- Asymmetric top with two spin isomers: total hydrogen spin I=I (ortho), I=0 (para)
- Energy difference 34.2 K
- High temperature limit OPR=3 (T>50 K)
- Spin temperature provides (maybe) some information about formation or condensation of water molecules on dust grains
- Herschel/HIFI has allowed for the first time highresolution spectroscopy of the fundamental rotational transitions of both ortho- and parawater in the ISM

Mumma et al. 1987

- OPR studied extensively in cometary atmospheres
- Optical or IR spectroscopy
- KAO, ISO, IRTF, Keck...
- Spin temperatures often ~30 K
- Some values consistent with LTE
- No values below ~20 K

OPR in Cometary Water

Mumma et al. 2011

Hartley 2 — Keck

Oct 22th 2010 Δ: 0.12 AU

v,: 1.00 km s⁻¹

SOUTH - Declination - NORTH

To Sun

Orbit

- Long-slit spectroscopy: measure OPR as a function of projected distance
- Most precise value 2.59±0.13, T_{spin} • 31±3 K
- T_{rot} varies strongly with projected • distance, but T_{spin} does not
- Solar nebula vs. ISM materials?
- Molecular abundances, isotopic ratios—OPR may provide additional useful information

Bonev et al. 2013, 2014

Absorption Spectroscopy

Galactic Longitide

Early HIFI Results

- H₂¹⁶O spectra nearly completely saturated
- $H_2^{18}O$ absorption typically not detected
- Early results, based on the 557 and 1113 GHz data, showed that the OPR in most cases is consistent with the high-temperature limit (e.g., W31C)
- Possible exception: negative velocities in Sgr B2, corresponding to "expanding molecular ring"
- OPR 2.35±0.35, T_{spin}~27 K, similar to values measured in cometary atmospheres
- Difficult measurements—have to get a good handle on systematic effects (e.g. baseline instabilities, sideband ratios), but also on water excitation

Lis et al. 2010

Molecular Excitation

- Fundamental rotational transitions of light hydrides typically have very high critical densities
- Ortho-H₂O, 557 GHz, n_{crit}=6x10⁷ cm⁻³
- Assume all population in the ground rotational state in the diffuse ISM
- NGC6334I: OPR 1.6±1 in the cold, quiescent gas, 2.5±0.8 in the outflow
- Addition of the 1669 GHz ortho-H₂O line allows direct determination of the excitation temperature
- NGC6334I:T_{ex}=6.5 K
- High for diffuse clouds, but absorption also seen in the ground state para-NH₃ line (tracer of dense gas)
- Revised OPR consistent with the hightemperature limit of 3

Emprechtinger et al.

2010, 2013

Sagittarius B2(N)

- Revisit Sagittarius B2
- Different line of sight, but nearby to Sgr B2(M) (tracing the same foreground gas)
- Independent measurement
- Better data reduction
- Redundant data set
- For the 557 and 1113 GHz lines: two independent measurements, using the HIFI mixer bands 1a/1b and 4b/ 5a
- Expect completely different systematics in terms of standing waves, sideband ratios etc.

Lis et al. 2013

OPR in Sgr B2(N)

- With a good understanding of the correlated noise, we can derive accurate estimates of the uncertainties of the OPR in the three velocity intervals
- Confirms the earlier results that the OPR in water at negative velocities corresponding to the gas in the "x2" orbits is slightly lower than 3
- Same OPR based on observations of the 557 at 1669 GHz ortho-H₂O lines—assumption of low Tex justified for this line of sight
- Final value 2.34±0.35 (2σ)
- Spin temperature 24–32 K

Lis et al. 2013

Galactic Disk Sources

- Extensive compilations of PRISMAS observations of sources in the Galactic disk
- Different galactocentric distances, probe gas in different spiral arms
- $H_2O/H_2 \sim 5 \ 10^{-8}$ in diffuse clouds
- OPR generally consistent with 3, possibly with the exception of some components toward W49N

Flagey et al. 2013

No Apparent Trends

Flagey et al. 2013

Water in Disks

TW Hya

Hogerheijde et al. 2011

- Lines of ortho- and para-water detected for the first time with Herschel/HIFI in TW Hydrae
- I0 mln years old T Tauri star, 0.6 M_☉ at 54 pc
- Lines seen in emission
- OPR 0.77+0.07 (Ισ);T_{spin}=I3.5 K
- Clearly lower than the cometary values!

TW Hya Revisited

- Simultaneous modeling of HIFI observations of water and ammonia
- Two classes of models
 - Desorption layer: compact and extended
 - Constant abundance: compact and extended
- Only model Cm gives an NH₃/H₂O ratio consistent with the low values observed in interstellar ices and solar system materials
- The same model is consistent within the errorbars with the H₂O OPR observed in the ISM and comets (OPR=1.4 +2.1/-1.15; mostly 20% calibration uncertainty)

Salinas et al. 2016

A&A 576, A85 (2015) DOI: 10.1051/0004-6361/201322717 © ESO 2015

Observations of water with *Herschel*/HIFI toward the high-mass protostar AFGL 2591*

Y. Choi^{1,2}, F. F. S. van der Tak^{2,1}, E. F. van Dishoeck^{3,4}, F. Herpin^{5,6}, and F. Wyrowski⁷

• Cold foreground absorption OPR=1.9±0.4, outflow 3.5±1

A&A 572, L10 (2014) DOI: 10.1051/0004-6361/201424007 © ESO 2014 Astronomy Astrophysics

Letter to the Editor

A non-equilibrium ortho-to-para ratio of water in the Orion PDR*,**

Y. Choi^{1,2}, F. F. S. van der Tak^{2,1}, E. A. Bergin³, and R. Plume⁴

- Orion S: OPR<2
- Orion Bar: OPR=0.1-0.5 $H_2^{18}O$ lines seen in emission, single component LVG

Orion Bar

- Edge-on PDR illuminated by the Trapezium cluster
- Strong temperature and density gradients, clumping single T, n model not applicable
- Use multi-line water observations (Choi, Bergin et al., in prep.) to constrain the physical conditions
- ISMDB Online ISM Database, model grid calculated using the Meudon PDR code
- PhD thesis of Thomas Putaud at UPMC with Xavier Michaud

Orion Bar — H₂¹⁶O

Isochoric

Isobaric

- No satisfactory solution
- Wide range of densities

- G_o and P relatively well constrained!
- See Marconi et al. (1998)

Best model summary map

Isotope	Transition	Frequency (GHz)	Intensities Choi 2017 (cgs)	Intensities PDR model (cgs)	Diff	(%)
16	o 110-101	556.936	3.83E-06	3.39E-06		-12
	p 111-000	1113.343	1.40E-05	1.17E-05		-17
	o 212-101	1669.905	3.81E-05	2.47E-05		-35
	p 211-202	752.033	2.93E-06	3.23E-06		10
	p 202-111	987.927	6.83E-06	7.14E-06	i	5
	o 312-303	1097.365	2.67E-06	1.58E-06		-41
	o 221-212	1661.008	9.30E-06	1.23E-05		32

Best-Fit Isobaric Model H₂¹⁶O

- Parameters: Go=4×10⁴, P=4×10⁷ cm⁻³K,Av=20, inclination~40°
- Parameters largely consistent with what is know about the region (P ~ I×10⁸ cm⁻³K in other studies)
- Reasonable fit maximum discrepancies with H₂¹⁶O observations ~40%
- Fits both ortho and para lines

Where is Water Emission Coming From?

• Largest contribution ~5-9 A_V — T_{kin} ~30-35 K \rightarrow OPR ~2.6

Model Predictions for H₂¹⁸O

lsotope	Transition	Frequency (GHz)	Intensities Choi 2017 (cgs)	Intensities PDR model (cgs)	Di	ff (%)
18	o 110-101	547.676	3.87E-08	6.89E-08		78
	p 111-000	1101.697	7.67E-07	4.79E-07		-38

- H₂¹⁸O spectral and collisional data implemented into the Meudon PDR code
- Best fit H₂¹⁶O model (Go~4×10⁴, P~4×10⁷ cm⁻³K):
 - p-H₂¹⁸O 1102 GHz under-predicted by 38% (but SNR only 4.7 in the data!)
 - $o-H_2^{18}O$ 547 GHz over-predicted by 78%
- Beam-dilution?
- Width of the Bar ~25", beam size at 547 GHz 38" — beam dilution ~1.5 (linear correction)
- Affects optically thin H₂¹⁸O much more than optically thick H₂¹⁶O

Choi et al. 2014

Summary

- There is a range of OPR values in water in the diffuse and dense ISM
- Most values are consistent with the high-temperature limit of 3, given the (relatively large) uncertainties
- There are some exceptions, e.g., gas on the "x2" orbits toward Sagittarius B2, where T_{spin}~24–32 K (2σ); also some velocity components toward W49N, Orion Bar
- There is no evidence for very low OPR values:
 - TW Hya—model dependent and consistent with OPR=3
 - Orion Bar—OPR may be lower than 3, but not likely as low as 0.1-0.5
- No trends seen in the OPR with the H₂O, H₂, or H column density, galactocentric distance, or molecular fraction
- Analysis of the existing Herschel data can still be improved
- All these conclusions are consistent with the latest cometary measurements