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C. M. Persson et al.: Ortho-to-para ratio of NH2

Appendix A: Additional figures
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Fig. A.1. Energy level diagram of NH2. The observed transitions in this
paper are marked in red.
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R. Le Gal et al: H-transfer reaction of NH2

Therefore statistically a 3:1 ratio is obtained.

Without any external force spontaneous flip are not likely to happen (e.g., the characteristic

timescale for radiative spontaneous spin flip from the ortho-H2 ground state (J = 1) to the para-H2

ground state (J = 0) is ⇡ 1013 yr Raich & Good 1964; Pachucki & Komasa 2008). So the para

and ortho forms remain in their originel configurations and then fomed two distinct molecules.

This constitutes the statistical population of the molecules which is di↵erent from the thermal

population of the molecule. If interactions between the two distinguishable species are possible

and e�cient then the OPR can relax towards the lower energy state and then tends to the thermal

OPR value (which depends on the molecule and temperature considered). This thermal OPR is

oftently oberved to be di↵erent than the statistical value for the lower temperature where only the

lower energy ground state tends to be populated. So the observations of OPRs di↵erent from their

statistical value should indicate that the surroundings temperatures are low.

2.1. NH2 OPR

The NH2 OPR can be expressed as follows:

OPR(Tkin) =
3
Portho

J gJ exp(�EJKa ,Kc
/kBT )

Ppara
J gJ exp(�EJKa ,Kc

/kBT )
(4)

with gJ , the degeneracy of the total angular momentum, EJ the energy of the rotational levels

(which also depends on the Ka and Kc pseudo-quantum numbers corresponding to the projections

of the total angular momentum J on, respectively, the plane axis (a) perpendicular to the rotation

axis and the axis perpendicular to the molecular plane (c)). kB stands for the Boltzmann constant.

Note that for simplicity the fine- and hyperfine-structures are ommited in this formula.

Figures 2 and 4 show in black the variation of the OPR of NH2 as a function of the kinetic

temperature at thermal equilibrium. Without any environmental constraints, the OPR should be

equal to the ratio of the statistical weights of all odd and even levels, that is to say 3 at high

temperature. At low temperatures only ground states are populated.

Due to the anti-symmetry of the electronic wave function, the ground spin state of ortho NH2

is the lowest level (see NH2 energy level diagram Fig. A.1 in Persson et al. 2016), the ground spin

state of the para form lying at an energy ⇠ 30.4 K higher. Thus, at low temperatures the NH2 OPR

can be written as follows:

OPR(Tlow) t
3 gJ=0 exp(�E000/Tkin)
gJ=1 exp(�E101/Tkin)

= exp
 ��E

Tkin

!
= exp

 
30.4
Tkin

!
(5)

where �E = E000 � E101 = �30.4 K is the energy di↵erence between the two ground spin states

ortho and para. Thus, OPR(15K) t 7.6, OPR(10K) t 21, and the OPR keep increasing with the

decreasing temperature, as shown by the black curve on Figures 2 and 4.

2.2. How to explain NH2 OPR below the thermal value?

In Persson et al. (2016), we suggested that the observed NH2 OPRs lower than the statistical weight

value could be due to the non-LTE OPR of H2 which should pertain at those low temperatures (see

Figure 1). The H2 OPR is indeed controlling the initiating key reaction involved in the formation

5

NH2	
  OPR	
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Fig. 6. W31C. Upper: normalised spectra of the ortho 953 GHz and para
1444 GHz lines. Middle: deconvolved spectra where the strongest hfs
component is plotted for both transitions. The hot core VLSR is marked
with a dotted vertical line. Lower: the optical depth and column den-
sity ratios of the convolved spectra as functions of VLSR for absorptions
larger than 5σ. The horizontal dashed line marks the high-temperature
OPR limit of three. (Details are found in Sect. 3.4.)

exceeded five times the thermal root mean square (rms), as mea-
sured in line-free regions of the baseline. In a few cases we show
lower limits, where only the ortho line satisfies this condition.
Assuming that the OPR is constant across the line profile in each
velocity component, we show the equally weighted averages of
ratios over velocity ranges in magenta. All the resulting OPR
averages are listed in Table 3.

In summary, we find a value above the statistical limit in
the molecular envelope of W49N, 3.5 ± 0.1 (formal errors),
while for the other three molecular envelopes we find values
slightly below three, in the range (2.3−2.7) ± 0.1. In the translu-
cent interstellar gas towards W31C we find similar values of
(2.2−2.9) ± 0.2. However, we also obtain values above three in
the translucent gas; towards W31C we find one component with
!4.2, and, similarly, towards W49N one component with !5.0.
In addition, we find an OPR of 3.4 ± 0.1 in the redshifted dense
and cold filament interacting with W51 at VLSR ∼ 68 km s−1.

3.5. Uncertainties

The 1σ errors shown in Figs. 6–9 and given in Table 3 corre-
spond to quadratically summed uncertainties that are due to ther-
mal noise and and calibration, including uncertainties in the gain
ratios of upper and lower sidebands. The variation within the dy-
namical velocity components seems to be somewhat larger than
the formal errors when averaging over components. We do not
know at this time if this is a real chemical effect or a symptom
of imperfections in our approach or data.

Additional uncertainties, much more difficult to estimate ac-
curately, consist of errors in the deconvolution, emission from
the background hot cores, and the excitation. The deconvolution
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Fig. 7. W49N. Notation as in Fig. 6.

was checked by comparison of the main hfs component of the
respective line obtained from the deconvolution with the results
from Gaussian fits with good agreements. Examples are shown
for W31C in Figs. A.2, A.3, where we have used the results from
the Gaussian fitting performed in paper II. The emission of the
ortho line from the background hot core has a minor impact
on the derived OPR. For example, in W31C we obtain an OPR
of 1.6 without any of the emission or correction for excitation.
Adding the removal of emission the mean OPR increases to 1.8.

The largest uncertainty in the derived OPR is the excita-
tion, as shown in Fig. A.4. Using Eq. (3), we find upper limits
to the excitation temperatures as follows: Tex(ortho) " 15.1 K,
"17.0 K, "17.4 K, and "10.5 K, and Tex(para) " 29 K, "34 K,
"33 K, and "26 K, in the W31C, W49N, W51, and G34.3
molecular envelopes, respectively. Applying the correction
from the ALI modelling in W31C, Tex(ortho) = 12.8 K and
Tex(para) = 17.4 K, we find that the mean OPR increases from
1.8 to 2.5. It is clear that if the excitation temperatures are un-
derestimated, the derived OPRs will also be underestimated and
could reach, or exceed, the thermal equilibrium value. However,
the opposite is also true. The OPRs will be overestimated if we
apply too high excitation temperatures. The result in the W31C
molecular envelope, OPR = 2.5 ± 0.1, can, however, be com-
pared to the ALI model, where we find a similar value of 2.6
(Fig. 5), in support of an OPR below three. Towards G34.3, we
used an ortho excitation temperature that equals the upper limit
obtained from the observed almost saturated line, which sup-
ports a mean OPR below three in this source as well, even though
the para excitation may also play a role. For W49N and W51
the excitation temperature is more difficult to pinpoint, since we
were not able to find good ALI models, and the upper limits are
rather high. The OPR in these sources may in fact have been
overestimated since we have used the Tex derived from the ALI
models that did not reproduce the depth of the ortho absorptions,
partly because the excitation temperature was too high.

Assuming that the excitation along the sight-line gas is low,
the OPR in these components is not affected and hence can
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Table 3. Resulting average OPRs, observed temperatures, TK, and the temperature ranges in which the OPRs are reproduced by model b, Tmod,
for a density of nH = 2 × 104 cm−3 (Fig. 10) in the molecular envelopes and the dense core associated with W51, and nH = 1 × 103 cm−3 for the
translucent gas (Fig. A.12).

Source VLSR OPR TK Tmod(t ≃ 5 × 105 yrs) Tmod(t ! 106 yrs)
(km s−1) (K) (K) (K)

Molecular envelopes

W31C −3.5 2.5(±0.1) 30−50(a) 28−35 32−35
W49N +8 3.5(±0.1) ∼130(b) 5−12 23−25
W51 +57 2.7(±0.1) 20−50(c) 23−28 29−32
G34 +58 2.3(±0.1) 20−70(c,d) !35 !35

Dense and cold core

W51 +68 3.4(±0.1) 10−30( f ) 10−13 23−25

Translucent gas Tmod(t ≃ 104 yrs) Tmod(t ! 106 yrs)
W31C +22 2.2(±0.2) 30−100(e) !27 !34

+28 2.9(±0.2) 20−100(e) 5−16 25−29
+40 2.6(±0.2) 25−75(e) 12−27 28−34

Tmod(t ! 5 × 104 yrs)
W31C +10 !1.7 . . . . . .

+17 !4.2 30−85(e) 17−21
W49N +39 !5.0 <15(e) 14−19

+63 !1.4 20−120(e) . . .

Notes. Details about the models are found in Sect. 4. The tabulated errors are the formal errors (details in Sect. 3.5.) (a) Fazio et al. (1978) and
Mueller et al. (2002). (b) Vastel et al. (2001). (c) van der Tak et al. (2013). (d) Derived from NH3 rotational transitions (Hajigholi et al. 2016). (e) The
excitation temperature of the CI 492 GHz line (Gerin et al. 2015). ( f ) Derived from CN and NH3 rotational transitions (Mookerjea et al. 2014).
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Fig. 8. W51. Notation as in Fig. 6.

be considered as more robust than the results in the molecular
envelopes. However, Emprechtinger et al. (2013) showed that
the assumption that all population of water is in the ground
state is not valid in the foreground gas towards NGC 6334I. The
ortho-NH2 953 GHz line is less affected by the excitation than
the ortho-H2O 557 GHz line, however. Flagey et al. (2013) stud-
ied the water OPR along the same sight-lines as analysed in
this paper and found from analysing the two ortho ground-state
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Fig. 9. G34.3+0.1. Notation as in Fig. 6.

transitions at 557 GHz and 1 669 GHz that Tex ≈ 5 K. Assuming
that NH2 and NH3 co-exist, we checked in addition our ammo-
nia data along the same sight-lines as reported in this paper. We
observed ammonia JK = 10–00, 20–10, 30–20, 21–11, 31–21, and
32–22 lines and find no signs of absorptions, except for the lines
connecting to the lowest ground states. This suggests that the
excitation is also negligible in the 953 GHz and 1444 GHz NH2
lines (see Hajigholi et al. 2016, for ALI modelling of ammonia
in G34.3).
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Fig. 8. W51. Notation as in Fig. 6.

be considered as more robust than the results in the molecular
envelopes. However, Emprechtinger et al. (2013) showed that
the assumption that all population of water is in the ground
state is not valid in the foreground gas towards NGC 6334I. The
ortho-NH2 953 GHz line is less affected by the excitation than
the ortho-H2O 557 GHz line, however. Flagey et al. (2013) stud-
ied the water OPR along the same sight-lines as analysed in
this paper and found from analysing the two ortho ground-state

0

0.2

0.4

0.6

0.8

1

G34.3+0.1  −  NH
2

F
lu

x 
/ C

on
tin

uu
m

 F
lu

x

 

 

ortho

para

0

0.2

0.4

0.6

0.8

1

1.2

main hfs emission removed

0

2

4

6

8

10

τ or
th

o
 / 

τ pa
ra

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

 N
or

th
o
 / 

N
pa

ra

 v
LSR

 [km s−1]

Fig. 9. G34.3+0.1. Notation as in Fig. 6.

transitions at 557 GHz and 1 669 GHz that Tex ≈ 5 K. Assuming
that NH2 and NH3 co-exist, we checked in addition our ammo-
nia data along the same sight-lines as reported in this paper. We
observed ammonia JK = 10–00, 20–10, 30–20, 21–11, 31–21, and
32–22 lines and find no signs of absorptions, except for the lines
connecting to the lowest ground states. This suggests that the
excitation is also negligible in the 953 GHz and 1444 GHz NH2
lines (see Hajigholi et al. 2016, for ALI modelling of ammonia
in G34.3).
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•  Lis	
  et	
  al.	
  2010:	
  ortho-­‐H2Cl+	
  (110-­‐	
  101)	
  and	
  para-­‐H2Cl+	
  (111-­‐	
  000)	
  with	
  Herschel/
HIFI	
  in	
  absorp+on	
  toward	
  NGC	
  6334I	
  =>	
  OPR≈3	
  

•  Neufeld	
  et	
  al.	
  2012:	
  para-­‐H2Cl+	
  (111-­‐	
  000)	
  with	
  Herschel/HIFI:	
  	
  
	
  in	
  absorp+on	
  toward	
  Sgr	
  A,	
  W31C,	
  Orion	
  MC,	
  AFGL	
  2591	
  	
  
	
  in	
  emission	
  in	
  OMC	
  1	
  (Orion	
  Bar	
  and	
  Orion	
  South)	
  

•  Gerin	
  et	
  al.	
  2013:	
  ortho-­‐H2Cl+	
  (110-­‐	
  101)	
  	
  with	
  30	
  meter	
  and	
  CSO	
  
	
  toward	
  W31C	
  and	
  W49N	
  

•  Neufeld	
  et	
  al.	
  2015:	
  ortho-­‐H2Cl+	
  (212-­‐	
  101)	
  in	
  foreground	
  of	
  diffuse	
  gas	
  toward	
  
G29.96-­‐0.02,	
  W51,	
  W3(OH)	
  and	
  W49N,	
  with	
  addi+onal	
  para-­‐H2Cl+	
  (111-­‐	
  000)	
  	
  
=>	
  	
  2.5	
  ≤	
  OPR	
  ≤	
  3	
  

	
  
(see	
  David	
  Neufeld’s	
  talk)	
  

=>	
  	
  OPR≈3	
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2. NH2 OPR and ortho-para interconversion

2.1. NH2 OPR under thermal conditions

The NH2 OPR under thermal conditions can be expressed by the
equation:

OPRNH2
(T ) =

3
Portho

J gJ exp(�EJKa ,Kc
/kBT )

Ppara
J gJ exp(�EJKa ,Kc

/kBT )
(1)

with gJ , the degeneracy of the total angular momentum, EJ the
energy of the rotational levels, which also depends on the Ka and
Kc pseudo-quantum numbers corresponding to the projections
of the total angular momentum J on the symmetry axes of the
prolate and oblate symmetric top limits, respectively (Townes &
Schawlow 1955). Ortho-NH2 corresponds to Ka + Kc = 2n, and
para-NH2 to Ka+Kc = 2n+1, with n a non-negative integer. For
simplicity the fine- and hyperfine-structure energies are omitted
in this formula.

Figure 1 shows in black the variation of the OPR of NH2
as a function of the temperature at thermal equilibrium. At high
temperatures, where many rotational levels are populated, the
thermal OPR is equal to three, the ratio of the statistical weights
of all ortho and para levels. At very low temperatures or strongly
subthermal rotational excitation, only the lowest ortho and para
rotational states are populated. Due to the anti-symmetry of the
ground electronic wave function, the ground rotational-spin state
(000) is an ortho state of NH2 while the lowest para rotational
state (101) lies 30.4 K higher (Persson et al. 2016). Thus, with
the additional assumption that the fine-structure and hyperfine-
structure energies are degenerate, at low temperatures, the NH2
OPR can be expressed by the equation:

OPRNH2
(Tlow) t

3 gJ=0 exp(�E000/T )
gJ=1 exp(�E101/T )

= exp
 ��E

T

!

= exp
 

30.4
T

!
, (2)

where �E = E000 � E101 = �30.4 K is the energy di↵erence
between the two ground rotational-spin states. Thus, the low-
temperature OPR continues to increase strongly with decreasing
temperature.

In the interstellar medium, true thermodyamic equilibrium,
at least between kinetic and rotational energy, is only reached at
the higher densities attainable. At lower densities, the rotational
excitation can be subthermal, so that the rotational temperature
lies below the kinetic temperature. In this case, it would be more
appropriate to use the rotational temperature in the OPR formu-
lae. For regions in which NH2 is detected in absorption, as is the
case for the observed values considered in the present study, the
low temperature limit is normally adequate.

2.2. NH2-OPR values below thermal equilibrium

In Persson et al. (2016), it was suggested that those observed
NH2-OPR values lower than the thermal value could arise be-
cause in such low temperature environments H2 is para-enriched.
The H2 OPR controls the key initiating reaction involved in the
formation of nitrogen hydrides and in particular the formation
of the ammonium ion, NH+4 , the main direct precursor of NH2 in
cold dense gas (Persson et al. 2016). NH2 can also be produced
through the dissociative recombination of NH+3 with electrons.
This pathway is not dominant for cold dense gas but can become

more e�cient for di↵use and translucent gas, where the electron
fraction is higher. For dense cold gas conditions, the nuclear spin
branching ratios in the dissociative recombination with electrons
of the three spin configurations of NH+4 (ortho, meta, and para)
primarily determines the NH2 OPR if it is only due to formation
processes, according to the formula:

OPRNH2 formation =
2 ⇥MPRNH+4 +

4
3 ⇥ OPRNH+4 + 1

2
3 ⇥ OPRNH+4 + 1

(3)

where MPR stands for meta-to-para ratio. Considering these
nuclear-spin selection rules, the gas-phase spin-conservation
model developed in Le Gal et al. (2014a,b) was able to reproduce
the NH2-OPR values below the statistical value of 3:1 observed
towards the molecular envelopes of W31C, W51 and G34.3, and
in translucent gas towards W31C. However, as mentioned in the
Introduction, this model was not able to reproduce a variety of
NH2-OPR values above three found towards the molecular en-
velope of W49N, a dense filament connected to W51, and some
translucent gas towards W31C and W49N.

2.3. Plausible H-exchange reaction between o-NH2 and
p-NH2

In order to understand the NH2-OPR values found above the sta-
tistical value of three, Persson et al. (2016) suggested that once
formed, the NH2 ortho and para radicals should undergo an H-
exchange reaction with H, allowing interconversion between the
lowest rotational states of ortho-NH2 and para-NH2, hereafter
o�NH2 and p�NH2 respectively:

p�NH2 + H ���*)��� o�NH2 + H + 30.4K, (4)

Such processes are likely to thermalize the OPR given su�cient
time. But if the reactive collisions are ine�cient, either because
they are inherently slow or because there are faster competitive
destruction mechanisms, the OPR should lie in between the for-
mation value of the NH2 OPR, produced by exothermic dissocia-
tive electronic recombination of NH+4 , and the thermalized value,
e.g. 7.6 at 15 K or 21 at 10 K. If, on the other hand, the average
time between two successive ortho/para exchange collisions be-
tween H and NH2 is negligible compared with the average life-
time of NH2 then the NH2 OPR should reflect the temperature
of the gas and follow the LTE OPR, which can be quite high at
su�ciently low temperatures.

To quantify these points, Persson et al. (2016) added the fol-
lowing two reactions to the Le Gal et al. (2014a) model:

H + o�NH2
ko!p���! H + p�NH2, (5)

H + p�NH2
kp!o���! H + o�NH2, (6)

with ko!p = kp!o exp(�30.4/T ) cm3 s�1, which should be accu-
rate at low temperatures. For the kp!o rate coe�cient, a typical
radical-radical value of 1⇥10�10 cm3 s�1 was chosen initially.

We label, as Model 1, the model b used in Persson et al.
(2016), which takes into account the network of reactions of Le
Gal et al. (2014a) with the addition of the forward and back-
ward NH2 + H reactions (5) and (6). The physical fixed condi-
tions used to run this model are typical of dense gas: a density
nH = 2⇥104 cm�3, the commonly used value ⇣ = 1.3⇥ 10�17 s�1

for the cosmic-ray ionization rate (Spitzer & Tomasko 1968;
Prasad & Huntress 1980; Wakelam et al. 2005; Vastel et al. 2006)
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as a function of the temperature at thermal equilibrium. At high
temperatures, where many rotational levels are populated, the
thermal OPR is equal to three, the ratio of the statistical weights
of all ortho and para levels. At very low temperatures or strongly
subthermal rotational excitation, only the lowest ortho and para
rotational states are populated. Due to the anti-symmetry of the
ground electronic wave function, the ground rotational-spin state
(000) is an ortho state of NH2 while the lowest para rotational
state (101) lies 30.4 K higher (Persson et al. 2016). Thus, with
the additional assumption that the fine-structure and hyperfine-
structure energies are degenerate, at low temperatures, the NH2
OPR can be expressed by the equation:

OPRNH2
(Tlow) t

3 gJ=0 exp(�E000/T )
gJ=1 exp(�E101/T )

= exp
 ��E

T

!

= exp
 

30.4
T

!
, (2)

where �E = E000 � E101 = �30.4 K is the energy di↵erence
between the two ground rotational-spin states. Thus, the low-
temperature OPR continues to increase strongly with decreasing
temperature.

In the interstellar medium, true thermodyamic equilibrium,
at least between kinetic and rotational energy, is only reached at
the higher densities attainable. At lower densities, the rotational
excitation can be subthermal, so that the rotational temperature
lies below the kinetic temperature. In this case, it would be more
appropriate to use the rotational temperature in the OPR formu-
lae. For regions in which NH2 is detected in absorption, as is the
case for the observed values considered in the present study, the
low temperature limit is normally adequate.

2.2. NH2-OPR values below thermal equilibrium

In Persson et al. (2016), it was suggested that those observed
NH2-OPR values lower than the thermal value could arise be-
cause in such low temperature environments H2 is para-enriched.
The H2 OPR controls the key initiating reaction involved in the
formation of nitrogen hydrides and in particular the formation
of the ammonium ion, NH+4 , the main direct precursor of NH2 in
cold dense gas (Persson et al. 2016). NH2 can also be produced
through the dissociative recombination of NH+3 with electrons.
This pathway is not dominant for cold dense gas but can become

more e�cient for di↵use and translucent gas, where the electron
fraction is higher. For dense cold gas conditions, the nuclear spin
branching ratios in the dissociative recombination with electrons
of the three spin configurations of NH+4 (ortho, meta, and para)
primarily determines the NH2 OPR if it is only due to formation
processes, according to the formula:

OPRNH2 formation =
2 ⇥MPRNH+4 +

4
3 ⇥ OPRNH+4 + 1

2
3 ⇥ OPRNH+4 + 1

(3)

where MPR stands for meta-to-para ratio. Considering these
nuclear-spin selection rules, the gas-phase spin-conservation
model developed in Le Gal et al. (2014a,b) was able to reproduce
the NH2-OPR values below the statistical value of 3:1 observed
towards the molecular envelopes of W31C, W51 and G34.3, and
in translucent gas towards W31C. However, as mentioned in the
Introduction, this model was not able to reproduce a variety of
NH2-OPR values above three found towards the molecular en-
velope of W49N, a dense filament connected to W51, and some
translucent gas towards W31C and W49N.

2.3. Plausible H-exchange reaction between o-NH2 and
p-NH2

In order to understand the NH2-OPR values found above the sta-
tistical value of three, Persson et al. (2016) suggested that once
formed, the NH2 ortho and para radicals should undergo an H-
exchange reaction with H, allowing interconversion between the
lowest rotational states of ortho-NH2 and para-NH2, hereafter
o�NH2 and p�NH2 respectively:

p�NH2 + H ���*)��� o�NH2 + H + 30.4K, (4)

Such processes are likely to thermalize the OPR given su�cient
time. But if the reactive collisions are ine�cient, either because
they are inherently slow or because there are faster competitive
destruction mechanisms, the OPR should lie in between the for-
mation value of the NH2 OPR, produced by exothermic dissocia-
tive electronic recombination of NH+4 , and the thermalized value,
e.g. 7.6 at 15 K or 21 at 10 K. If, on the other hand, the average
time between two successive ortho/para exchange collisions be-
tween H and NH2 is negligible compared with the average life-
time of NH2 then the NH2 OPR should reflect the temperature
of the gas and follow the LTE OPR, which can be quite high at
su�ciently low temperatures.

To quantify these points, Persson et al. (2016) added the fol-
lowing two reactions to the Le Gal et al. (2014a) model:

H + o�NH2
ko!p���! H + p�NH2, (5)

H + p�NH2
kp!o���! H + o�NH2, (6)

with ko!p = kp!o exp(�30.4/T ) cm3 s�1, which should be accu-
rate at low temperatures. For the kp!o rate coe�cient, a typical
radical-radical value of 1⇥10�10 cm3 s�1 was chosen initially.

We label, as Model 1, the model b used in Persson et al.
(2016), which takes into account the network of reactions of Le
Gal et al. (2014a) with the addition of the forward and back-
ward NH2 + H reactions (5) and (6). The physical fixed condi-
tions used to run this model are typical of dense gas: a density
nH = 2⇥104 cm�3, the commonly used value ⇣ = 1.3⇥ 10�17 s�1

for the cosmic-ray ionization rate (Spitzer & Tomasko 1968;
Prasad & Huntress 1980; Wakelam et al. 2005; Vastel et al. 2006)
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2. NH2 OPR and ortho-para interconversion
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in this formula.

Figure 1 shows in black the variation of the OPR of NH2
as a function of the temperature at thermal equilibrium. At high
temperatures, where many rotational levels are populated, the
thermal OPR is equal to three, the ratio of the statistical weights
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between the two ground rotational-spin states. Thus, the low-
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at least between kinetic and rotational energy, is only reached at
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excitation can be subthermal, so that the rotational temperature
lies below the kinetic temperature. In this case, it would be more
appropriate to use the rotational temperature in the OPR formu-
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In Persson et al. (2016), it was suggested that those observed
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cause in such low temperature environments H2 is para-enriched.
The H2 OPR controls the key initiating reaction involved in the
formation of nitrogen hydrides and in particular the formation
of the ammonium ion, NH+4 , the main direct precursor of NH2 in
cold dense gas (Persson et al. 2016). NH2 can also be produced
through the dissociative recombination of NH+3 with electrons.
This pathway is not dominant for cold dense gas but can become
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primarily determines the NH2 OPR if it is only due to formation
processes, according to the formula:
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exchange reaction with H, allowing interconversion between the
lowest rotational states of ortho-NH2 and para-NH2, hereafter
o�NH2 and p�NH2 respectively:

p�NH2 + H ���*)��� o�NH2 + H + 30.4K, (4)

Such processes are likely to thermalize the OPR given su�cient
time. But if the reactive collisions are ine�cient, either because
they are inherently slow or because there are faster competitive
destruction mechanisms, the OPR should lie in between the for-
mation value of the NH2 OPR, produced by exothermic dissocia-
tive electronic recombination of NH+4 , and the thermalized value,
e.g. 7.6 at 15 K or 21 at 10 K. If, on the other hand, the average
time between two successive ortho/para exchange collisions be-
tween H and NH2 is negligible compared with the average life-
time of NH2 then the NH2 OPR should reflect the temperature
of the gas and follow the LTE OPR, which can be quite high at
su�ciently low temperatures.

To quantify these points, Persson et al. (2016) added the fol-
lowing two reactions to the Le Gal et al. (2014a) model:

H + o�NH2
ko!p���! H + p�NH2, (5)

H + p�NH2
kp!o���! H + o�NH2, (6)

with ko!p = kp!o exp(�30.4/T ) cm3 s�1, which should be accu-
rate at low temperatures. For the kp!o rate coe�cient, a typical
radical-radical value of 1⇥10�10 cm3 s�1 was chosen initially.

We label, as Model 1, the model b used in Persson et al.
(2016), which takes into account the network of reactions of Le
Gal et al. (2014a) with the addition of the forward and back-
ward NH2 + H reactions (5) and (6). The physical fixed condi-
tions used to run this model are typical of dense gas: a density
nH = 2⇥104 cm�3, the commonly used value ⇣ = 1.3⇥ 10�17 s�1

for the cosmic-ray ionization rate (Spitzer & Tomasko 1968;
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Table 2. NH2 and NH destruction updates.

Chemical reactions(a) ↵ � � References
( cm3 s�1)

NH2 N ! N2 H H 1.2(-10) 0.00 0.00 KIDA(b)

NH2 O ! NH OH 7.0(-12) -0.1 0.00 KIDA(c)

3.5(-12) 0.5 0.00 Le Gal et al. (2014a)(d)

NH2 O ! HNO H 6.3(-11) -0.1 0.00 KIDA(c)

NH2 O ! NO H2 0.00 0.00 0.00 KIDA(c)

NH N ! N2 H 5.0(-11) 0.1 0.00 KIDA(e)

NH O ! OH N 0.00 0.00 0.00 KIDA(e)

2.9(-11) 0.00 0.00 Le Gal et al. (2014a)(d)

NH O ! NO H 6.6(-11) 0.00 0.00 KIDA(e)

Notes: Numbers in parentheses are powers of 10.
(a) For the reactions involving NH2 as a reactant, the same rate coe�cient is used for both ortho and para forms.
(b) Wakelam et al. (2013), KIDA datasheet (http://kida.obs.u-bordeaux1.fr/datasheet/datasheet 5734 N+NH2 V1.pdf);
(c) Wakelam et al. (2013), KIDA datasheet (http://kida.obs.u-bordeaux1.fr/datasheet/datasheet 290 O+NH2 V4.pdf);
(d) from Prasad & Huntress (1980);
(e) Wakelam et al. (2013), KIDA datasheet (http://kida.obs.u-bordeaux1.fr/datasheet/datasheet 1500 O+NH V7.pdf).

Table 3. Di↵erent models used in this work(a) .

Modifications
Models

1 2 3 4 5 6 7 1’

H + NH2 H-exchange addition (reactions 5 and 6) X X X X X X X X

NH2 destruction updates (see Table 2) X X X X X X

[Htot]ini = 2 ⇥ [H2] X X X X X

[Htot]ini = [H] X

[Htot]ini =
1
2 ⇥ [H] + [H2] X X

⇣ = 1.3⇥10�17 s�1 X X X X

⇣ = 3⇥10�17 s�1 X

⇣ = 2⇥10�16 s�1 X X X

nH = 2⇥104 cm�3 X X X X X

nH = 1⇥103 cm�3 X X X

[S]tot = 3.0⇥10�6 X X X X X

[S]tot = 1.3⇥10�5 X X X

Notes.

(a) All these models are based on the Le Gal et al. (2014a) model to which we have applied the modifications mentioned in the first column.

⇠ 2⇥105 yr, the thermalization becomes less e�cient due to the
decrease of the atomic hydrogen abundance.

Since our astrochemical model is a pseudo-time dependent
model, meaning that the physical conditions are fixed for the
entire simulation as a function of time, it would probably be
more realistic to start with hydrogen initially half atomic and half
molecular. This constitutes Model 4, for which the OPR results
are represented in Figure 9 and the H, N, O, o-NH2 and p-NH2
abundances at 20 K by the dashed-dotted lines in Figure 7. The
results are quite similar to those for Model 3, by comparison of
the dotted and dashed-dotted lines in the figure.

3.5. Impact of the cosmic-ray ionization rate

Another possible way to increase the atomic hydrogen abun-
dance in the gas phase is to vary the cosmic-ray ionization rate,
⇣, which is not well constrained in dense cold gas. We have var-
ied ⇣ in between the commonly used value of 1.3⇥10�17 s�1 and
1⇥10�16 s�1, which lies at the upper limit for dark cores (see

e.g. Caselli et al. 1998). The OPR values that we obtained by
running Model 2 with these di↵erent values of the cosmic-ray
ionization rate are displayed in Figure 10 as functions of temper-
ature at steady state and an earlier time. As can be seen, increas-
ing the cosmic-ray ionization rate increases the thermalization
of the NH2 OPR at low temperatures. The results in Figure 11
show that increasing ⇣ increases the atomic hydrogen abundance
in the gas phase and thus makes the H + NH2 H-exchange reac-
tion more e�cient compared to the destruction reactions of NH2
by N and O.

Specifically, we find that increasing the cosmic-ray ioniza-
tion rate by one order of magnitude increases the abundance
of hydrogen by approximately the same amount, and also that
even an increase to ⇣ = 3⇥10�17 s�1, a factor approximately
two times the standard value, allows the model to produce NH2-
OPR values above 3. This particular model is named Model 5
in Tables 3. Interestingly, the increased thermalization in Model
5 complements the increased thermalization produced by an ini-
tial non-zero abundance of atomic hydrogen in that the impact
of the ionization rate starts to a↵ect the hydrogen abundance at

7

Le Gal et al., A&A. (2016) 
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Table 2. NH2 and NH destruction updates.

Chemical reactions(a) ↵ � � References
( cm3 s�1)

NH2 N ! N2 H H 1.2(-10) 0.00 0.00 KIDA(b)

NH2 O ! NH OH 7.0(-12) -0.1 0.00 KIDA(c)

3.5(-12) 0.5 0.00 Le Gal et al. (2014a)(d)

NH2 O ! HNO H 6.3(-11) -0.1 0.00 KIDA(c)

NH2 O ! NO H2 0.00 0.00 0.00 KIDA(c)

NH N ! N2 H 5.0(-11) 0.1 0.00 KIDA(e)

NH O ! OH N 0.00 0.00 0.00 KIDA(e)

2.9(-11) 0.00 0.00 Le Gal et al. (2014a)(d)

NH O ! NO H 6.6(-11) 0.00 0.00 KIDA(e)

Notes: Numbers in parentheses are powers of 10.
(a) For the reactions involving NH2 as a reactant, the same rate coe�cient is used for both ortho and para forms.
(b) Wakelam et al. (2013), KIDA datasheet (http://kida.obs.u-bordeaux1.fr/datasheet/datasheet 5734 N+NH2 V1.pdf);
(c) Wakelam et al. (2013), KIDA datasheet (http://kida.obs.u-bordeaux1.fr/datasheet/datasheet 290 O+NH2 V4.pdf);
(d) from Prasad & Huntress (1980);
(e) Wakelam et al. (2013), KIDA datasheet (http://kida.obs.u-bordeaux1.fr/datasheet/datasheet 1500 O+NH V7.pdf).

Table 3. Di↵erent models used in this work(a) .

Modifications
Models

1 2 3 4 5 6 7 1’

H + NH2 H-exchange addition (reactions 5 and 6) X X X X X X X X

NH2 destruction updates (see Table 2) X X X X X X

[Htot]ini = 2 ⇥ [H2] X X X X X

[Htot]ini = [H] X

[Htot]ini =
1
2 ⇥ [H] + [H2] X X

⇣ = 1.3⇥10�17 s�1 X X X X

⇣ = 3⇥10�17 s�1 X

⇣ = 2⇥10�16 s�1 X X X

nH = 2⇥104 cm�3 X X X X X

nH = 1⇥103 cm�3 X X X

[S]tot = 3.0⇥10�6 X X X X X

[S]tot = 1.3⇥10�5 X X X

Notes.

(a) All these models are based on the Le Gal et al. (2014a) model to which we have applied the modifications mentioned in the first column.

⇠ 2⇥105 yr, the thermalization becomes less e�cient due to the
decrease of the atomic hydrogen abundance.

Since our astrochemical model is a pseudo-time dependent
model, meaning that the physical conditions are fixed for the
entire simulation as a function of time, it would probably be
more realistic to start with hydrogen initially half atomic and half
molecular. This constitutes Model 4, for which the OPR results
are represented in Figure 9 and the H, N, O, o-NH2 and p-NH2
abundances at 20 K by the dashed-dotted lines in Figure 7. The
results are quite similar to those for Model 3, by comparison of
the dotted and dashed-dotted lines in the figure.

3.5. Impact of the cosmic-ray ionization rate

Another possible way to increase the atomic hydrogen abun-
dance in the gas phase is to vary the cosmic-ray ionization rate,
⇣, which is not well constrained in dense cold gas. We have var-
ied ⇣ in between the commonly used value of 1.3⇥10�17 s�1 and
1⇥10�16 s�1, which lies at the upper limit for dark cores (see

e.g. Caselli et al. 1998). The OPR values that we obtained by
running Model 2 with these di↵erent values of the cosmic-ray
ionization rate are displayed in Figure 10 as functions of temper-
ature at steady state and an earlier time. As can be seen, increas-
ing the cosmic-ray ionization rate increases the thermalization
of the NH2 OPR at low temperatures. The results in Figure 11
show that increasing ⇣ increases the atomic hydrogen abundance
in the gas phase and thus makes the H + NH2 H-exchange reac-
tion more e�cient compared to the destruction reactions of NH2
by N and O.

Specifically, we find that increasing the cosmic-ray ioniza-
tion rate by one order of magnitude increases the abundance
of hydrogen by approximately the same amount, and also that
even an increase to ⇣ = 3⇥10�17 s�1, a factor approximately
two times the standard value, allows the model to produce NH2-
OPR values above 3. This particular model is named Model 5
in Tables 3. Interestingly, the increased thermalization in Model
5 complements the increased thermalization produced by an ini-
tial non-zero abundance of atomic hydrogen in that the impact
of the ionization rate starts to a↵ect the hydrogen abundance at
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Figure 9. Chemical network diagram, for a one-sided slab model with nH =
104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in visual
magnitude.
(A color version of this figure is available in the online journal.)

the cloud. The depths were chosen to illustrate several different
regimes.

1. AV = 0. At the cloud surface, there is no shielding and
the abundance of molecules is small. The Cl+/Cl ratio is
∼105, being determined by the balance between photoion-
ization and recombination. For the latter process, radiative
recombination and charge transfer recombination with H—
although endothermic by ∼ 0.6 eV—are of roughly equal
importance.

2. AV = 0.8. Here, H2 self-shielding has greatly increased
the H2 abundance. Reaction with H2 is now the dominant
destruction mechanism for Cl+, resulting in the formation of
HCl+. However, the e/H2 abundance ratio is still sufficient
for dissociative recombination to dominate the destruction
of HCl+, although the competing reaction with H2 produces
a small amount of H2Cl+. The dissociative recombination
of HCl+ leads to atomic Cl, which becomes the dominant
gas-phase reservoir of chlorine. Beyond AV ∼ 0.8, the
abundances of the HCl+ and H2Cl+ ions start to fall, along
with that of Cl+.

3. AV = 2.0. The e/H2 abundance ratio has now dropped
sufficiently that HCl+ reacts primarily with H2, rather than
electrons, forming H2Cl+. HCl is produced by dissociative
recombination of H2Cl+, although the dominant formation
process for HCl is the slightly endothermic reaction of
H2 and Cl; this reaction is still possible at the ∼200 K

Figure 10. Chemical network diagram, for a one-sided slab model with
nH = 104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in
visual magnitude.
(A color version of this figure is available in the online journal.)

temperature at this point within the PDR. At AV = 2.0,
HCl and Cl account respectively for ∼0.1% and ∼99.9%
of elemental chlorine in the gas phase.

4. AV = 4.0. The gas temperature drops below the level at
which HCl can be formed by reaction of H2 with Cl, and the
HCl abundance is lower than it was at AV = 2.0. The Cl+/
Cl ratio is now only 10−8, the photoionization rate of Cl
having dropped dramatically. Thus the formation of HCl+
is dominated by reaction of H+

3 with Cl, not H2 with Cl+.
The H+

3 molecular ion is produced by the effects of cosmic
rays; these ionize H2, forming H+

2, which then transfers a
proton to H2 to form H+

3.
5. AV = 10.0. As at AV = 4.0, HCl+ is produced primarily

by reaction of H+
3 with Cl, and reaction of HCl+ with H2

then forms H2Cl+. At this depth, the electron fraction is so
low that dissociative recombination of H2Cl+ is no longer
dominant. H2Cl+ transfers a proton to a neutral species
of higher proton affinity than HCl (e.g., CO or H2O; this
process is denoted by the arrow labeled “N”), yielding
HCl. At this point, the external UV is almost completely
attenuated, and the HCl destruction rate is very small.
HCl now accounts for several ×10% of the gas-phase
chlorine abundance, with atomic chlorine accounting for
essentially all of the remainder. Our results in this regime
are in good agreement with those obtained previously by
Schilke et al (1995). H2Cl+ and CCl+ are also present,
but their abundances are just a few ×0.01% of gas-phase
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the cloud. The depths were chosen to illustrate several different
regimes.

1. AV = 0. At the cloud surface, there is no shielding and
the abundance of molecules is small. The Cl+/Cl ratio is
∼105, being determined by the balance between photoion-
ization and recombination. For the latter process, radiative
recombination and charge transfer recombination with H—
although endothermic by ∼ 0.6 eV—are of roughly equal
importance.

2. AV = 0.8. Here, H2 self-shielding has greatly increased
the H2 abundance. Reaction with H2 is now the dominant
destruction mechanism for Cl+, resulting in the formation of
HCl+. However, the e/H2 abundance ratio is still sufficient
for dissociative recombination to dominate the destruction
of HCl+, although the competing reaction with H2 produces
a small amount of H2Cl+. The dissociative recombination
of HCl+ leads to atomic Cl, which becomes the dominant
gas-phase reservoir of chlorine. Beyond AV ∼ 0.8, the
abundances of the HCl+ and H2Cl+ ions start to fall, along
with that of Cl+.

3. AV = 2.0. The e/H2 abundance ratio has now dropped
sufficiently that HCl+ reacts primarily with H2, rather than
electrons, forming H2Cl+. HCl is produced by dissociative
recombination of H2Cl+, although the dominant formation
process for HCl is the slightly endothermic reaction of
H2 and Cl; this reaction is still possible at the ∼200 K

Figure 10. Chemical network diagram, for a one-sided slab model with
nH = 104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in
visual magnitude.
(A color version of this figure is available in the online journal.)

temperature at this point within the PDR. At AV = 2.0,
HCl and Cl account respectively for ∼0.1% and ∼99.9%
of elemental chlorine in the gas phase.

4. AV = 4.0. The gas temperature drops below the level at
which HCl can be formed by reaction of H2 with Cl, and the
HCl abundance is lower than it was at AV = 2.0. The Cl+/
Cl ratio is now only 10−8, the photoionization rate of Cl
having dropped dramatically. Thus the formation of HCl+
is dominated by reaction of H+

3 with Cl, not H2 with Cl+.
The H+

3 molecular ion is produced by the effects of cosmic
rays; these ionize H2, forming H+

2, which then transfers a
proton to H2 to form H+

3.
5. AV = 10.0. As at AV = 4.0, HCl+ is produced primarily

by reaction of H+
3 with Cl, and reaction of HCl+ with H2

then forms H2Cl+. At this depth, the electron fraction is so
low that dissociative recombination of H2Cl+ is no longer
dominant. H2Cl+ transfers a proton to a neutral species
of higher proton affinity than HCl (e.g., CO or H2O; this
process is denoted by the arrow labeled “N”), yielding
HCl. At this point, the external UV is almost completely
attenuated, and the HCl destruction rate is very small.
HCl now accounts for several ×10% of the gas-phase
chlorine abundance, with atomic chlorine accounting for
essentially all of the remainder. Our results in this regime
are in good agreement with those obtained previously by
Schilke et al (1995). H2Cl+ and CCl+ are also present,
but their abundances are just a few ×0.01% of gas-phase
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Figure 11. Chemical network diagram, for a one-sided slab model with
nH = 104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in
visual magnitude.
(A color version of this figure is available in the online journal.)

elemental chlorine. HCl reacts with H+
3 to form H2Cl+,

although this rapidly leads to reformation of HCl by
proton transfer to other neutral species. Several other
destruction processes are of comparable importance for
HCl destruction: cosmic ray induced photodissociation, and
reaction with the positive ions C+ and He+. In this regime,
the rates of HCl formation and destruction all scale linearly
with the cosmic-ray ionization rate, with the result that the
HCl abundance is almost independent of the latter.

Although the diagrams shown in Figures 9–13 apply to just
a single model, similar regimes exist for other values of χUV
and nH. Although the relevant regions move in or out (to
larger or smaller AV ) as the assumed χUV/nH ratio is increased
or decreased, the same qualitative behavior is observed. In
examining similar diagrams for the entire set of models, we
have not identified any important reaction pathway that is not
apparent in Figures 9–13.

4.2. Observational Implications

To date, HF, CF+, and HCl are the only halogen-bearing
molecules to have been detected in the interstellar medium.
In regard to HF, our results are identical to those presented in
NWS05: we predict HF to be the dominant gas-phase reservoir
of fluorine within both diffuse and dense molecular clouds; we
expect the Herschel Space Observatory to detect widespread
absorption in the HF J = 1 − 0 transition. However, the

Figure 12. Chemical network diagram, for a one-sided slab model with
nH = 104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in
visual magnitude.
(A color version of this figure is available in the online journal.)

abundances we predict for CF+ lie a factor ∼3 above the
prediction of NWS05, a direct consequence of the smaller
dissociation rate adopted for CF+ in the present study. As noted
by Neufeld et al. (2006), the CF+ column densities inferred
from observations of the Orion Bar were already a factor of ∼4
below the predictions of NWS05, and the discrepancy between
theory and observation is now increased to more than an order
of magnitude. This disagreement may indicate that we have
overestimated the rate coefficient for reaction of C+ and HF.
We are not aware of any laboratory studies of this reaction; the
rate we adopt is simply the capture rate, and thus an upper limit
on the true reaction rate. Laboratory measurements of this key
reaction would be very desirable.

HCl has been observed in both diffuse and dense molecular
clouds. In diffuse clouds, ultraviolet absorption studies have led
to upper limits, and in one case, a tentative detection toward ζ
Oph (Federman et al. 1995). The latter result, obtained using
the Goddard High Resolution Spectrograph on Hubble Space
Telescope (HST), yielded an HCl column density of 2.7 ±
1.0(1σ ) × 1011 cm−2. Given an atomic chlorine column density
of 3.0 ± 1.0(1σ ) × 1014 cm−2 for this sight-line (Federman
et al. 1995), the corresponding N (HCl)/N(Cl) ratio is 9 × 10−4

(uncertain by a factor ∼2), a value in excellent agreement with
predictions of the diffuse cloud models presented by vDB86.
Very similar results are obtained from our updated treatment of
Cl chemistry. In Figure 14, we show predictions from a series
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Figure 11. Chemical network diagram, for a one-sided slab model with
nH = 104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in
visual magnitude.
(A color version of this figure is available in the online journal.)

elemental chlorine. HCl reacts with H+
3 to form H2Cl+,

although this rapidly leads to reformation of HCl by
proton transfer to other neutral species. Several other
destruction processes are of comparable importance for
HCl destruction: cosmic ray induced photodissociation, and
reaction with the positive ions C+ and He+. In this regime,
the rates of HCl formation and destruction all scale linearly
with the cosmic-ray ionization rate, with the result that the
HCl abundance is almost independent of the latter.

Although the diagrams shown in Figures 9–13 apply to just
a single model, similar regimes exist for other values of χUV
and nH. Although the relevant regions move in or out (to
larger or smaller AV ) as the assumed χUV/nH ratio is increased
or decreased, the same qualitative behavior is observed. In
examining similar diagrams for the entire set of models, we
have not identified any important reaction pathway that is not
apparent in Figures 9–13.

4.2. Observational Implications

To date, HF, CF+, and HCl are the only halogen-bearing
molecules to have been detected in the interstellar medium.
In regard to HF, our results are identical to those presented in
NWS05: we predict HF to be the dominant gas-phase reservoir
of fluorine within both diffuse and dense molecular clouds; we
expect the Herschel Space Observatory to detect widespread
absorption in the HF J = 1 − 0 transition. However, the

Figure 12. Chemical network diagram, for a one-sided slab model with
nH = 104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in
visual magnitude.
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abundances we predict for CF+ lie a factor ∼3 above the
prediction of NWS05, a direct consequence of the smaller
dissociation rate adopted for CF+ in the present study. As noted
by Neufeld et al. (2006), the CF+ column densities inferred
from observations of the Orion Bar were already a factor of ∼4
below the predictions of NWS05, and the discrepancy between
theory and observation is now increased to more than an order
of magnitude. This disagreement may indicate that we have
overestimated the rate coefficient for reaction of C+ and HF.
We are not aware of any laboratory studies of this reaction; the
rate we adopt is simply the capture rate, and thus an upper limit
on the true reaction rate. Laboratory measurements of this key
reaction would be very desirable.

HCl has been observed in both diffuse and dense molecular
clouds. In diffuse clouds, ultraviolet absorption studies have led
to upper limits, and in one case, a tentative detection toward ζ
Oph (Federman et al. 1995). The latter result, obtained using
the Goddard High Resolution Spectrograph on Hubble Space
Telescope (HST), yielded an HCl column density of 2.7 ±
1.0(1σ ) × 1011 cm−2. Given an atomic chlorine column density
of 3.0 ± 1.0(1σ ) × 1014 cm−2 for this sight-line (Federman
et al. 1995), the corresponding N (HCl)/N (Cl) ratio is 9 × 10−4

(uncertain by a factor ∼2), a value in excellent agreement with
predictions of the diffuse cloud models presented by vDB86.
Very similar results are obtained from our updated treatment of
Cl chemistry. In Figure 14, we show predictions from a series
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Figure 13. Chemical network diagram, for a one-sided slab model with
nH = 104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in
visual magnitude.
(A color version of this figure is available in the online journal.)

of models with χUV ranging from 10−1 to 102. All models
apply to a slab with parameters appropriate to ζ Oph, viz.
density nH = 102.5 cm−3 and total visual extinction of 0.8
mag. The horizontal axis shows the H2 column density, for
which the measured value is 4.2 × 1020 cm−2 along this sight
line, while the vertical axis shows N (HCl)/N(Cl) (red curve),
N (Cl+)/N (Cl) (orange), and N (HCl+)/N(Cl) (blue). Squares
located along the curves show the results for χUV = 10−1

to 102 from right to left. The H2 column density along the
ζ Oph sight line requires a χUV ∼ 100.5, in agreement with
previous studies, and the predicted N (HCl)/N (Cl) is in good
agreement with the observations. The almost exact agreement
between the present model and that of vDB86 in regard to the
predicted HCl abundance appears to result from the fortuitious
cancellation of two changes in the photochemical network: the
photodissociation rate for HCl and the photoionization rate for
Cl are both increased by a factor of ∼2. As in the vDB86 models,
the predicted Cl+ column density lies substantially below the
observations. Federman et al. (1995) attributed this discrepancy
to the presence of a significant Cl+ column density within H ii
regions along the sight line. One important caveat must be noted.
The results shown in Figure 14 were obtained by assuming a
branching ratio of only 10% for the production of HCl following
the dissociative recombination of H2Cl+. This value was initially
invoked primarily to explain the relative low HCl abundance
derived from upper limits obtained with the Copernicus satellite.
Models that we obtained for other branching ratios (0, 0.3, and

Figure 14. Predictions from a series of models with χUV ranging from 10−1

to 102. All models apply to a slab with parameters appropriate to ζ Oph, viz.
density nH = 102.5 cm−3 and a total visual extinction of 0.8 mag. The horizontal
axis shows the H2 column density, for which the measured value is 4.2 × 1020

along this sight line, while the vertical axis shows N (HCl)/N (Cl) (red curve),
N (Cl+)/N (Cl) (orange), and N (HCl+)/N (Cl) (blue). Squares located along the
curves show the results for χUV = 10−1, 1, 10, and 102 from right to left.
(A color version of this figure is available in the online journal.)

1.0) indicate that the HCl column density is linearly proportional
to the branching ratio for values greater than 0.1 With a
branching ratio of zero (i.e., with no production of HCl from
dissociative recombination of H2Cl+), a non-zero but negligible
HCl column density (N (HCl)/N (Cl) ∼ 10−6) results from the
endothermic reaction of H2 with Cl.

In dense clouds, HCl has been unequivocally detected in
several sources by means of submillimeter observations of the
J = 1 − 0 emission line. First detected using the Kuiper Air-
borne Observatory toward Orion (Blake et al. 1985) and then Sgr
B2 (Zmuidzinas et al. 1995), the J = 1 − 0 transition has also
been observed using the ground-based Caltech Submillimeter
Observatory (CSO) under good atmospheric conditions. CSO
observations have led to additional detections toward Orion A,
Mon R2 (Salez et al. 1996) and several other sources (T. G.
Phillips et al. 2009, in preparation), as well as mapping obser-
vations toward OMC-1 (Schilke et al. 1995). Typical column
densities derived for these dense clouds lie in the few ×1013 to
few ×1014 cm−2 range, in reasonable agreement with the pre-
dictions of our model for regions at high density exposed to
strong UV radiation (Figure 5). As noted in the observational
studies cited above, depletion plays an important role in limiting
the fractional abundance of HCl.

Our study identifies two additional Cl-bearing species that
are potentially detectable: the molecular ions HCl+ and H2Cl+.
These ions are isoelectronic with OH and H2S, respectively.
They are most abundant near cloud surfaces, where the pho-
toionization rate for HCl is highest, and show column densities
that are an increasing function of χUV/nH. Thus, PDRs subject to
strong UV irradiation present attractive targets for searches for
HCl+ and H2Cl+ at millimeter and submillimeter wavelengths.
For example, in a PDR with nH = 104 cm−3 and χUV = 104,
column densities of 5.7 and 2.6 × 1011 cm−2 are predicted for
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Figure 13. Chemical network diagram, for a one-sided slab model with
nH = 104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in
visual magnitude.
(A color version of this figure is available in the online journal.)

of models with χUV ranging from 10−1 to 102. All models
apply to a slab with parameters appropriate to ζ Oph, viz.
density nH = 102.5 cm−3 and total visual extinction of 0.8
mag. The horizontal axis shows the H2 column density, for
which the measured value is 4.2 × 1020 cm−2 along this sight
line, while the vertical axis shows N (HCl)/N(Cl) (red curve),
N (Cl+)/N (Cl) (orange), and N (HCl+)/N(Cl) (blue). Squares
located along the curves show the results for χUV = 10−1

to 102 from right to left. The H2 column density along the
ζ Oph sight line requires a χUV ∼ 100.5, in agreement with
previous studies, and the predicted N (HCl)/N (Cl) is in good
agreement with the observations. The almost exact agreement
between the present model and that of vDB86 in regard to the
predicted HCl abundance appears to result from the fortuitious
cancellation of two changes in the photochemical network: the
photodissociation rate for HCl and the photoionization rate for
Cl are both increased by a factor of ∼2. As in the vDB86 models,
the predicted Cl+ column density lies substantially below the
observations. Federman et al. (1995) attributed this discrepancy
to the presence of a significant Cl+ column density within H ii
regions along the sight line. One important caveat must be noted.
The results shown in Figure 14 were obtained by assuming a
branching ratio of only 10% for the production of HCl following
the dissociative recombination of H2Cl+. This value was initially
invoked primarily to explain the relative low HCl abundance
derived from upper limits obtained with the Copernicus satellite.
Models that we obtained for other branching ratios (0, 0.3, and

Figure 14. Predictions from a series of models with χUV ranging from 10−1

to 102. All models apply to a slab with parameters appropriate to ζ Oph, viz.
density nH = 102.5 cm−3 and a total visual extinction of 0.8 mag. The horizontal
axis shows the H2 column density, for which the measured value is 4.2 × 1020

along this sight line, while the vertical axis shows N (HCl)/N (Cl) (red curve),
N (Cl+)/N (Cl) (orange), and N (HCl+)/N (Cl) (blue). Squares located along the
curves show the results for χUV = 10−1, 1, 10, and 102 from right to left.
(A color version of this figure is available in the online journal.)

1.0) indicate that the HCl column density is linearly proportional
to the branching ratio for values greater than 0.1 With a
branching ratio of zero (i.e., with no production of HCl from
dissociative recombination of H2Cl+), a non-zero but negligible
HCl column density (N (HCl)/N (Cl) ∼ 10−6) results from the
endothermic reaction of H2 with Cl.

In dense clouds, HCl has been unequivocally detected in
several sources by means of submillimeter observations of the
J = 1 − 0 emission line. First detected using the Kuiper Air-
borne Observatory toward Orion (Blake et al. 1985) and then Sgr
B2 (Zmuidzinas et al. 1995), the J = 1 − 0 transition has also
been observed using the ground-based Caltech Submillimeter
Observatory (CSO) under good atmospheric conditions. CSO
observations have led to additional detections toward Orion A,
Mon R2 (Salez et al. 1996) and several other sources (T. G.
Phillips et al. 2009, in preparation), as well as mapping obser-
vations toward OMC-1 (Schilke et al. 1995). Typical column
densities derived for these dense clouds lie in the few ×1013 to
few ×1014 cm−2 range, in reasonable agreement with the pre-
dictions of our model for regions at high density exposed to
strong UV radiation (Figure 5). As noted in the observational
studies cited above, depletion plays an important role in limiting
the fractional abundance of HCl.

Our study identifies two additional Cl-bearing species that
are potentially detectable: the molecular ions HCl+ and H2Cl+.
These ions are isoelectronic with OH and H2S, respectively.
They are most abundant near cloud surfaces, where the pho-
toionization rate for HCl is highest, and show column densities
that are an increasing function of χUV/nH. Thus, PDRs subject to
strong UV irradiation present attractive targets for searches for
HCl+ and H2Cl+ at millimeter and submillimeter wavelengths.
For example, in a PDR with nH = 104 cm−3 and χUV = 104,
column densities of 5.7 and 2.6 × 1011 cm−2 are predicted for
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Figure 13. Chemical network diagram, for a one-sided slab model with
nH = 104 cm−3 and χUV = 104. The figure is labeled by the depth, AV , in
visual magnitude.
(A color version of this figure is available in the online journal.)

of models with χUV ranging from 10−1 to 102. All models
apply to a slab with parameters appropriate to ζ Oph, viz.
density nH = 102.5 cm−3 and total visual extinction of 0.8
mag. The horizontal axis shows the H2 column density, for
which the measured value is 4.2 × 1020 cm−2 along this sight
line, while the vertical axis shows N (HCl)/N(Cl) (red curve),
N (Cl+)/N (Cl) (orange), and N (HCl+)/N(Cl) (blue). Squares
located along the curves show the results for χUV = 10−1

to 102 from right to left. The H2 column density along the
ζ Oph sight line requires a χUV ∼ 100.5, in agreement with
previous studies, and the predicted N (HCl)/N (Cl) is in good
agreement with the observations. The almost exact agreement
between the present model and that of vDB86 in regard to the
predicted HCl abundance appears to result from the fortuitious
cancellation of two changes in the photochemical network: the
photodissociation rate for HCl and the photoionization rate for
Cl are both increased by a factor of ∼2. As in the vDB86 models,
the predicted Cl+ column density lies substantially below the
observations. Federman et al. (1995) attributed this discrepancy
to the presence of a significant Cl+ column density within H ii
regions along the sight line. One important caveat must be noted.
The results shown in Figure 14 were obtained by assuming a
branching ratio of only 10% for the production of HCl following
the dissociative recombination of H2Cl+. This value was initially
invoked primarily to explain the relative low HCl abundance
derived from upper limits obtained with the Copernicus satellite.
Models that we obtained for other branching ratios (0, 0.3, and

Figure 14. Predictions from a series of models with χUV ranging from 10−1

to 102. All models apply to a slab with parameters appropriate to ζ Oph, viz.
density nH = 102.5 cm−3 and a total visual extinction of 0.8 mag. The horizontal
axis shows the H2 column density, for which the measured value is 4.2 × 1020

along this sight line, while the vertical axis shows N (HCl)/N (Cl) (red curve),
N (Cl+)/N (Cl) (orange), and N (HCl+)/N (Cl) (blue). Squares located along the
curves show the results for χUV = 10−1, 1, 10, and 102 from right to left.
(A color version of this figure is available in the online journal.)

1.0) indicate that the HCl column density is linearly proportional
to the branching ratio for values greater than 0.1 With a
branching ratio of zero (i.e., with no production of HCl from
dissociative recombination of H2Cl+), a non-zero but negligible
HCl column density (N (HCl)/N (Cl) ∼ 10−6) results from the
endothermic reaction of H2 with Cl.

In dense clouds, HCl has been unequivocally detected in
several sources by means of submillimeter observations of the
J = 1 − 0 emission line. First detected using the Kuiper Air-
borne Observatory toward Orion (Blake et al. 1985) and then Sgr
B2 (Zmuidzinas et al. 1995), the J = 1 − 0 transition has also
been observed using the ground-based Caltech Submillimeter
Observatory (CSO) under good atmospheric conditions. CSO
observations have led to additional detections toward Orion A,
Mon R2 (Salez et al. 1996) and several other sources (T. G.
Phillips et al. 2009, in preparation), as well as mapping obser-
vations toward OMC-1 (Schilke et al. 1995). Typical column
densities derived for these dense clouds lie in the few ×1013 to
few ×1014 cm−2 range, in reasonable agreement with the pre-
dictions of our model for regions at high density exposed to
strong UV radiation (Figure 5). As noted in the observational
studies cited above, depletion plays an important role in limiting
the fractional abundance of HCl.

Our study identifies two additional Cl-bearing species that
are potentially detectable: the molecular ions HCl+ and H2Cl+.
These ions are isoelectronic with OH and H2S, respectively.
They are most abundant near cloud surfaces, where the pho-
toionization rate for HCl is highest, and show column densities
that are an increasing function of χUV/nH. Thus, PDRs subject to
strong UV irradiation present attractive targets for searches for
HCl+ and H2Cl+ at millimeter and submillimeter wavelengths.
For example, in a PDR with nH = 104 cm−3 and χUV = 104,
column densities of 5.7 and 2.6 × 1011 cm−2 are predicted for
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ratio to within the uncertainties. The average for the entire
sight-line is 3.50 0.62

0.21
-
+ (Table 4).

The solar system 35Cl/37Cl ratio is not entirely understood.
Citing Galactic chemical evolution models of Kobayashi et al.
(2011; hereafter KKU11), Muller et al. (2014) noted that the
isotopic ratios for most elements in the z = 0.89 absorber in
front of PKS 1830–211 were fitted well by a KKU11 model for
stars in the solar neighborhood with [Fe/H] = −2.6 (i.e., stars
with iron abundances, relative to H, a factor 10 2.6- times the
solar value). For that model, in which SNe II were the source of
heavy elements, the predicted 35Cl/37Cl isotopic ratio was 3.0,
very close to the solar system value of 3.1 and entirely
consistent with the value of 3.1 0.2

0.3
-
+ for the z = 0.89 absorber in

front of PKS 1830–211. However, the KKU11 model with
[Fe/H] = 0.0 (i.e., with solar abundances) predicts a 35Cl/37Cl
isotopic ratio of only 1.9, a factor ∼1.6 below the solar system
value, and a value that is significantly discrepant with the
results we have obtained here for the Galactic ISM. This
modest discrepancy notwithstanding, the KKU11 model does
predict that the 35Cl/37Cl will show a relatively weak
dependence on [Fe/H], in sharp contrast to most of the other
elemental isotopic ratios considered. Thus, although the solar
35Cl/37Cl ratio is evidently not predicted with perfect accuracy,
the model does correctly suggest that 35Cl/37Cl will not evolve
strongly.

4.3. Chloronium OPR

The OPRs plotted in Figure 6 (bottom panel) are all
consistent with the ratio of statistical weights, 3, to within the
estimated uncertainties. This is the behavior expected in LTE at
temperatures much larger than E k 20.2opD = K, where EopD
is the energy difference between the lowest rotational states of
ortho- and para-chloronium (101 and 000 respectively).
Observations of some other polyatomic hydrides in diffuse
molecular clouds reveal OPRs consistent with the ratio of
statistical weights—examples include H2O (Flagey et al. 2013;
Lis et al. 2013) and H2O

+ (Gerin et al. 2013; Schilke et al.
2013)—but this behavior is not universal. In particular, H3

+

(Crabtree et al. 2011) and NH3 (e.g., Persson et al. 2012) both
show OPRs with significant departures from the values
expected in LTE, a behavior that is believed to reflect the
OPR of H2 molecules involved in the formation of these

hydrides through nuclear-spin-conserving gas-phase reactions
(e.g., Oka 2004; Faure et al. 2013; Le Gal et al. 2014).
When chloronium is formed by the reaction

HCl (H , H)H Cl2 2
+ +—or indeed when any triatomic hydride

molecular ion (such as H2O
+) is formed by an analogous

hydrogen abstraction reaction—the resultant ions are formed
with an initial OPR, OPR0, that is determined by the nature of
the intermediate complex; if the latter is long-lived, then the
reaction occurs by the scrambling mechanism (e.g., Oka 2004;
Herbst 2015), in which all routes that lead to products are
allowed. In this case, one-half of all reactions of HCl+ with
para-H2 lead to ortho-H Cl2

+ (with the remainder forming para-
H Cl2

+), and five-sixths of all reactions of HCl+ with ortho-H2

lead to ortho-H Cl2
+. Thus, H Cl2

+ is formed with an initial
OPR, OPR0, that is related to the OPR of H2:

( ) ( )
( )

OPR H Cl
5 OPR H 3

OPR H 3
. (1)0 2

2

2
=

+

+
+

However, if the formation mechanism does not involve a long-
lived intermediate complex, but occurs instead by a hopping
mechanism in which a hydrogen atom breaks off from H2 and
attaches to HCl+ in a long-range interaction, then OPR (H Cl )0 2

+

is the ratio of statistical weights (i.e., 3), regardless of
OPR(H ).2 Detailed quantal calculations will be needed to
determine which case applies to H2Cl

+.
As discussed by Gerin et al. (2013) and Herbst (2015), the

relationship between OPR (H Cl )0 2
+ and the observed OPR for

H2Cl
+ depends upon the relative rates of two processes: (1)

destruction, which occurs primarily via DR at a rate that we
assume to be identical for the two spin symmetries; and (2)
thermalization via reactive collisions:

ortho H Cl H para H Cl H. (2)2 2q- + - ++ +

The latter process tends to drive OPR(H Cl )2
+ to its LTE value,

OPR (H Cl )LTE 2
+ . The solid black curve in Figure 7 shows the

dependence of OPR (H Cl )LTE 2
+ upon the gas temperature,

while the red curve shows the analogous quantity for molecular
hydrogen, OPR (H ).LTE 2 Dashed red and black curves show the
functions T9 exp( 20.2 K )- and T9 exp( 170 K )- applying

Table 4
Chloronium Column Densities, Isotopic Ratios, and Ortho-to-para Ratios toward W49N

vLSR N (o H Cl )2
35 +‐ N (o H Cl )2

37 +‐ N (p H Cl )2
35 +‐ N N(H Cl ) (H Cl )2

35
2
37+ + a OPRa

(km s−1) (10 cm12 2- ) (10 cm12 2- ) (10 cm12 2- )

[1, 10]b 7.16 2.36 0.64 3.04 0.52
0.21

-
+ 11.16 4.62

0.75
-
+

[10, 17]b 12.79 3.62 2.69 3.53 0.42
0.13

-
+ 4.76 0.69

0.18
-
+

[17, 25] 4.55 0.67 1.15 6.81 2.87
0.72

-
+ 3.98 1.13

0.42
-
+

[25, 43] 15.88 4.06 4.55 3.91 0.42
0.12

-
+ 3.49 0.32

0.11
-
+

[43, 51] 3.35 1.16 1.20 2.89 0.86
0.42

-
+ 2.80 0.77

0.40
-
+

[51, 66] 12.07 4.06 3.79 2.97 0.32
0.12

-
+ 3.19 0.34

0.13
-
+

[66, 80] 3.68 1.36 1.23 2.70 0.71
0.36

-
+ 2.99 0.80

0.39
-
+

[17, 80] 39.54 11.31 11.91 3.50 0.62
0.21

-
+ 3.32 0.53

0.20
-
+

Notes.
a Error bounds indicate the errors that could result from the presence of a weak interloper emission line within the velocity interval of integrated intensity 250 mK
km s 1- (125 mK km s 1- at the p H Cl2

35 +‐ frequency).
b Velocity intervals close to the source systemic velocity, for which the N (H Cl )2

+ estimates are unreliable.
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the OPR is close to OPR .0 Once again, future studies will be
needed to estimate the value of kop.

Given our assumptions about the possible errors, all of the
observed chloronium OPR values plotted in Figure 5 (lower
panel) are consistent with 3, and most are consistent with 2.5.
In light of the foregoing discussion, and given a strong prior
from astrochemical modeling that chloronium in diffuse clouds
is primarily present in gas with a temperature of at least 30 K
(for which OPR (H Cl )LTE 2

+ is very close to 3), an OPR
between 2.5 and 3 can be explained in any of the following
scenarios: (1) chloronium is formed by the hopping mechan-
ism; (2) the rate coefficient k 1.5 10 cm sop

10 3 12 ´ - - (such
that x 0.752 ); or (3) the observed chloronium lies mainly in
gas with T 1102 K (such that OPR (H ) 1.8LTE 2 ⩾ and
OPR (H Cl ) 2.5LTE 2

+ ⩾ ). Further work will be needed to
determine which of these scenarios applies (or apply).
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IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI

Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di
Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK,
CBK; Spain: Observatorio Astronómico Nacional (IGN),
Centro de Astrobiología (CSIC-INTA). Sweden: Chalmers
University of Technology—MC2, RSS & GARD; Onsala
Space Observatory; Swedish National Space Board, Stockholm
University—Stockholm Observatory; Switzerland: ETH Zur-
ich, FHNW; USA: Caltech, JPL, NHSC. Support for this work
was provided by NASA through an award issued by JPL/
Caltech. J.R.G. thanks MINECO for funding support under
grants CSD2009-00038, AYA2009-07304 and AYA2012-
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