Spin-state chemistry of deuterated ammonia

Jorma Harju^{1,2}, Olli Sipilä¹ & Paola Caselli¹

¹Max Planck Institute for extraterrestrial physics, ²Department of Physics, University of Helsinki

Nuclear spin effects in astrochemistry, Grenoble, 4.5.2017

Outline

▶ Formation of NH₂D, NHD₂, and ND₃

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Expected nuclear spin ratios
- Models and observations

Deuteration of ammonia I

- NH₂D, NHD₂, and ND₃ are most efficiently formed in reactions between NH₃ and deuterated ions, followed by dissociative recombination (Rodgers & Charnley 2001 ApJ 553, 613)
- ► Deuteration along the primary production chain $NH^+ \xrightarrow{H_2} NH_2^+ \xrightarrow{H_2} NH_3^+ \xrightarrow{H_2} NH_4^+$ is probably less important
- ▶ In prestellar cores the most likely agents are H_2D^+ , D_2H^+ , and D_3^+ , e.g., $NH_3 \xrightarrow{H_2D^+} NH_3D^+ \xrightarrow{e^-} NH_2D$

Deuteration of ammonia II

 Chemistry models usually assume that ion-molecule reactions occur through intermediate reaction complexes where nuclei are completely mixed, e.g.,

$$NH_{3}+D_{2}H^{+} \rightarrow (NH_{4}D_{2}^{+})^{\ddagger} \rightarrow \begin{cases} NH_{4}^{+} & + D_{2} & (1/15) \\ NH_{3}D^{+} & + HD & (8/15) \\ NH_{2}D_{2}^{+} & + H_{2} & (6/15) \end{cases}$$

In this scenario NHD₂ and ND₃ can be formed directly from NH₃ + D₂H⁺ and NH₃ + D₃⁺

(ロ) (同) (三) (三) (三) (○) (○)

 Spin selection rules in reactive collisions are needed for estimating the abundances of different spin species

Reaction $NH_3 + D_2H^+$

In both schemes, o/pNH_3 is \sim conserved and $o/p-NH_2D = 2 o/pNH_3 + 1$. In the upper scheme, $o/pNHD_2 = o/pD_2H^+$.

Formation on grains

- ► Molecules are formed through H (or D) atom additions, e.g., N* → NH* → NH₂ → NH₃ (grain surface species indicated with *)
- The degree of deuterium fractionation depends on the atomic D*/H* ratio
- Fractionation ratios are supposed to be statistical (Brown & Millar 1989, MNRAS 240, 25P):

NH_2D^*/NH_3^*	\approx	3 D*/H*
$\rm NHD_2^*/\rm NH_2D^*$	\approx	D^*/H^*
ND_3^*/NHD_2^*	\approx	$\frac{1}{3} D^* / H^*$

Spin ratios should correspond to the statistical weights: o:p-NH₃^{*} = 1:1 o:p-NH₂D^{*} = 3:1 o:p-NHD₂^{*} = 2:1 o:m:p-ND₃^{*} = 16:10:1

Statistical ratios

 Reactions where one H or D nucleus is added to a complex (like on grain surfaces) result in statistical spin ratios

 Proton/deuteron hop or abstraction reactions in the gas-phase should follow the same spin selection rules

Chemistry model

- Gas-grain chemistry code pyRate developed by Olli Sipilä
- The reaction set distinguishes the different nuclear spin states of light hydrogen molecules, nitrogen hydrides, water, and their deuterated forms
- Branching ratios calculated using symmetry rules (Sipilä, Harju, Caselli & Schlemmer 2015, A&A 581, A122)
- Predicts time variations and deviations from statistical spin ratios in the gas (and also on grains except at very late stages)

(ロ) (同) (三) (三) (三) (○) (○)

Dense dark cloud model, $n(H_2) = 5 \times 10^5 \text{ cm}^{-3}$, T = 10 K

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

Observations of deuterated ammonia

NH₃, NH₂D, NHD₂, and ND₃ have been observed previously towards Barnard 1 (Perseus) and L1689 N (Ophiuchus) Lis et al. 2002, ApJ 571, L55 Roueff et al. 2005, A&A 438, 585 Gerin et al. 2006, A&A 454, L63 Lis et al. 2006, ApJ 636, 916 Roueff et al. 2015, A&A 576, A99 Daniel et al. 2016, MNRAS 457, 1535 Lis et al. 2016, ApJ 827, 133 Results: $-[NH_2D]/[NH_3] \ge [NHD_2]/[NH_2D] \approx 0.2$, $-[ND_3]/[NHD_2] = 0.05 - 0.10$, $-o/pNH_2D \sim 3$, $o/pNHD_2 \sim 2$.

Recently also towards the starless core Oph/H-MM1 Harju, Daniel, Sipilä, Caselli et al. 2017, A&A 600, A61

Image: $N(H_2)$ from Herschel, contours: integrated $NH_3(1, 1)$ intensity, Friesen & Pineda et al. 2017, arXiv 1704.06318

-Rotational lines of $o+p-NH_2D$, $o+p-NHD_2$, and $m+p-ND_3$, and inversion lines of $p-NH_3$ towards the centre of the core were observed with APEX 12m, IRAM 30m, and GBT 100m

-A hydrostatic model (MBES) constructed based on the dust continuum and NH₃ observations.

-Chemical abundances (as functions of radius and time) were calculated using *pyRate*

-Spectral lines simulated using Mika Juvela's programs

Observed and modelled spin ratios

Abundance ratios derived from the observed spectra:

NH ₂ D/NH ₃	0.39 ± 0.02 (o:p-NH ₃ = 1:1)	
NHD_2/NH_2D	0.22 ± 0.02	
ND_3/NHD_2	0.06 ± 0.01 (o:m:p-ND ₃ = 18:10:1)	
o/p-NH ₂ D	3.0 ± 0.2	
o/p-NHD ₂	$\textbf{2.4}\pm\textbf{0.4}$	
Consistent with statistical spin ratios		

- Agree with previous observations towards two cores (Roueff et al. 2005 A&A 438, 585; Daniel et al. 2016 MNRAS 457, 1535)
- ► The best-fit chemistry model predicts, however, o/p-NH₂D ~ 2, o/p-NHD₂ ~ 4

Possible explanations for the discrepancy

- Contribution from grain surface chemistry? In the A&A paper this was considered unlikely because -the core is cold and probably well shielded
 -the observations pertain gas-phase molecules
 -evaporated molecules are rapidly reprocessed by ion-molecule reactions
- The complete scrambling hypothesis is not valid?
 -interchanges of nuclei in the reaction complex may be hindered by potential barriers
 - -nuclei do not have equivalent positions
 - -few experimental or theoretical studies of relevant reactions

ALMA Cycle 4

ALMA time granted for mapping H-MM1 in o+p-NH₂D, o+p-NHD₂, and CH₃OH at $\lambda = 3 \text{ mm}$ (Band 3) and 1 mm (Band 7) -Band 3: ACA+12m -Band 7: ACA+TP -angular resolution 3 - 4''

Do we see different spin ratios in the core nucleus where desorption from grains is very unlikely?

Project completed in April, Band 3 data received Thanks for Jaime Pineda for quick data reduction.

ALMA results

-o+pNH₂D integrated intensity maps are similar to the SCUBA 450 μ m and 850 μ m dust continuum maps.

 $-\mathrm{CH}_3\mathrm{OH}$ concentrates strongly on the core's eastern edge, which is more shielded from the interstellar radiation field.

 $\mbox{-}CH_3OH$ lines are only slightly broader than the \mbox{NH}_2D lines.

-Rotational temperatures derived from three $E-{\rm CH_3OH}$ lines are $\sim 10 {\it K}.$

-Peak fractional abundances:

 $X(E - CH_3OH) \le 3.5 \times 10^{-9}$ in the desorption layer ($A/E \sim 1.5$)

 $X(o-NH_2D) \le 7 \times 10^{-9}$ in the core.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Preliminary conlusions from ALMA data

- NH₂D is confined to the dense core and shows a flat column density distribution, that is, it is depleted in the centre.
- ► The analysis of o/p-NH₂D is still under way.
- CH₃OH indicates enhanced desorption on the eastern side of the core. Not correlated with NH₂D.
- No evidence for high temperatures or large velocity dispersion in the gas traced by CH₃OH
- Possible explanations:

-Reactive desorption plus asymmetric illumination (Vasyunin & Herbst 2013)

 $-CH_3OH$ traces a past shock related to an external event or the core formation (cf. Lis et al. 2016, ApJ 827, 133)