Spin dynamics of water ice and the OPR of gaseous water desorbed from ice

T. Hama, N. Watanabe, A. Kouchi, Institute of Low Temperature Science, Hokkaido University

Nuclear Spin Effects in Astrochemistry, 2-4 May 2017, Grenoble, France

Ortho and para water

(1) Ortho- H_2O and para- H_2O must exist in different rotational states. (Proton is a fermion)

(2) Nuclear spin conversion is very slow in the gas phase by radiation or nonreactive collisions.

Spin temperature (T_{spin}) : Ortho-to-para ratio (OPR)

assuming thermodynamic equilibrium

Spin and

rotational

degeneracy

 $\sum (2J+1)\exp ii$

OPR =

Miani and Tennyson, JCP (2004)., Cacciani et al., Phys. Rev. A (2012).

Rotational

energy

 $-E_{\mathrm{p}}(J_{K_a,K_a})$

20 25 30 35 40 45 50

Temperature (K)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0

5

10

15

Ortho-to-para ratio

The anomalous OPRs of gaseous H_2O have been observed in space.

The meaning of the observed T_{spin} remains a topic of continuing debate.

Lis et al., Astron. Astrophys. 521, L26 (2010)., Hogerheijde et al., Science 334, 338 (2011). Choi et al., Astron. Astrophys. 572, L10 (2014)., Willacy et al., Space Sci. Rev. 197, 151 (2015).

Hypothesis: T_{spin} reflects the formation temperature of ice?

Test the relation between T_{spin} and the ice formation temperature: H₂O ice was produced in situ through the hydrogenation of solid O₂ at 10 K.

Van Dishoeck, Herbst, and Neufeld, Chem. Rev. 113, 9043 (2013). Hama, and Watanabe, Chem. Rev. 113, 8783 (2013).

Infrared reflection-absorption spectra at 4000-800 cm⁻¹. (A) Vapor-deposited H_2O ice at 10 K. (B) H_2O ice produced by co-deposition of O_2 with atomic H at 10 K for 420 min.

REMPI rotational spectrum of H_2O photodesorbed from ice at 10 K

H₂O REMPI signal (arb. units)

Large difference of "rotational state of H_2O " between the gas and solid phases.

Turgeon et al., JPCA, 121, 1571 (2017). Michaut et al., Vib. Spec. 34 83 (2004).

-2

2

OPR-*T*_{spin} **curves in rotational hindered systems**

As the ΔE value decreased, the OPR reaches 3 at low temperature. \rightarrow The energies of ortho-, and para-H₂O become comparable.

The T_{spin} curve only applies to H_2O in the gas phase (free rotors).

In ice, H₂O has a high barrier (6700 K) to rotation, because of hydrogen-bond network.

Wittebort et al., JACS. 110, 5668 (1988).

Both ortho- and para-H₂O are no longer free rotors. The quenched ∠E value: 10⁻¹³ cm⁻¹ (10⁻¹³ K) (The same energy level !!)

Buntkowsky et al., Z. Phys. Chem. 222, 1049 (2008).

Ortho- and para-H₂O are energetically comparable at 10 K in strongly rotational-hindered systems (ice).

Nuclear spin conversion of H₂O

NSC: ortho-para state mixing by magnetic perturbation (e.g., paramagnetic O₂). **Proton has a magnetic moment (10⁻²⁶ J T⁻¹) Intermolecular proton–proton dipolar interaction can induce NSC.**

NSC of water (\blacksquare) and methane (\triangle) in an Ar matrix: Enhanced by intermolecular proton-proton dipolar interaction.

Fillion et al., EAS Pub. Ser., (2012)., Fukutani and Sugimoto, Prog. Surf. Sci., (2013).

As a result of rotational quenching, fast nuclear spin conversion of H_2O can occur in ice

In ice, each proton feels magnetic fields created by all protons in ice.

Ortho- and para-states are strongly mixed:

Intermolecular proton magnetic interaction >> rotational energy difference (ΔE_{rot}). 10⁻⁷ to 10⁻⁶ cm⁻¹ >> 10⁻¹³ cm⁻¹

The OPR of H₂O in ice is in dynamic equilibrium at the statistical value of 3. (The spin state of H₂O is superposition of ortho- and para-H₂O)

(1) Comparable energy of ortho- and para-H₂O by rotational quenching

(2) Fast continuous ortho-para interconversion

The origin of the anomalous OPRs of interstellar H_2O is still an open question. Nuclear-spin effects in gas-chemistry are key.

(1) NSC via ion-molecule reactions, e.g., H^+ or H_3O^+ .

Ortho-H₂O
$$(J_{Ka, Kc} = 1_{01}) + H^+ \rightarrow Para-H_2O (J_{Ka, Kc} = 0_{00}) + H^+$$

Ortho-H₂O $(J_{Ka, Kc} = 1_{01}) + H_3O^+ \rightarrow H_3O^+ + Para-H_2O (J_{Ka, Kc} = 0_{00})$

These two reactions can be endothermic at low temp. because ΔE_{rot} = 34.2 K. Might lead to para-enrichment of H₂O.

> (2) Gas-formation processes. $OH^+ + H_2 \rightarrow H_2O^+ + H$ $H_2O^+ + H_2 \rightarrow H_3O^+ + H$ $H_3O^+ + e \rightarrow H_2O + H$

Since H_2 can be para-enriched in interstellar clouds, the H_2O products might be also para-enriched.

 H_2O^+ , H_3O^+ have also nuclear-spin isomers. Nuclear-spin effects should be considered.

Accurate state-to-state rate coefficients at low temperature are unknown...

Gas-phase converion: Lique et al., Int. Rev. Phys. Chem. 33, 125 (2014). Nuclear-spin selection rules: Gerlich et al., Proc. R. Soc. A. 364, 3007 (2006).

Summary

(1) H₂O desorbed from ice at 10 K shows a statistical OPR of 3, even when the ice is produced in situ at 10 K.

(2) Reinterpretation of previous observations is necessary.

(3) Importance of the gas-phase chemistry.
(a) NSC via ion-molecule reactions, e.g., H⁺ or H₃O⁺.
(b) Gas-formation processes.

Hama, and Watanabe, Chem. Rev. 113, 8783 (2013). Hama ,Kouchi, Watanabe, Science 351, 65-67 (2016).

Financial supports: JSPS (grant 24224012), MEXT (grant 25108002).

Another explanation for nuclear spin state of H₂O in ice: NMR

Water ice: a diamagnetic insulator (No macroscopic nuclear magnetization). ↓ The direction of the proton spin angular momentum is distributed uniformly in ice. (No net magnetic moment).

Each proton feels magnetic fields created by all protons in ice, while Proton-proton dipolar interactions << thermal energy

 10^{-30} J (10 kHz) << 10^{-22} J (10 K)

When an H₂O molecule is desorbed from the ice into the gas phase, it is restored as "a coupled homonuclear spin-1/2 pair", ortho (*I*=1), or Para (*I*=0). \downarrow Since the desorbed H₂O molecules have sufficient energy, (> 34.2 K, ΔE_{rot} in the gas phase), the OPR can be statistical.

> Abragam: Principles of Nuclear Magnetism (1961). Levitt: Spin Dynamics: Basics of Nuclear Magnetic Resonance (2008).

Andersson and van Dishoeck, A. & A. **491**, 907 (2008).

Photodesorption mechanism

"kick-out": An H₂O molecule is desorbed without intramolecular bond dissociation by the momentum transfer from an energetic H atom photodissociated from a neighboring H₂O. H₂O(ice) + $hv \rightarrow$ hot H + OH, hot H + H₂O(ice) \rightarrow H + H₂O

Andersson, and van Dishoeck, Astron. Astrophys., 491, 907 (2008).

kick-out: D_2O desorption from " $D_2O + H_2S$ layered ice" by 193 nm irradiation.

Experiment (My PhD work): Hama et al., JCP. 132, 164508 (2010).

Resonance Enhanced Multi-Photon Ionization (REMPI) spectroscopy

In 2+1 REMPI of H₂O, 2-photon absorption excites population from the ground $X {}^{1}A_{1}$ (v=0, $J_{Ka,Kc}$) state to the intermediate $C {}^{1}B_{1}$ (v'=0, $J'_{Ka',Kc'}$) state. The absorption of one further photon transfers population into the ionization continuum. Since the REMPI transition is rotationally (i.e., OPR) resolved, we can get the rotational and spin temperature of desorbed H₂O.

> Physical Chemistry Research Lab Course A TU Braunschweig, Institute of Physical and Theoretical Chemistry SS 2014 G. Meijer, J. J. ter Meulen, P. Andresen, and A. Bath, The Journal of Chemical Physics 85, 6914 (1986).

Paramagnetic catalytic effects on the NSC of H_2O during photodesorption.

REMPI spectra of photodesorbed H2O from H2O/O2 (1:1) mixed ice at 10 K.

Stronger ortho-H2O lines than para-H2O lines.

Reproduced by the simulation with Trot = Tspin = 200 K.

Although the electron magnetic moment is about –658 times larger than the proton magnetic moment, the timescale for photodesorption (femto-s) is much shorter than that for NSC through magnetic interactions (micro-sec).

Fig. S3: REMPI spectral simulations. $T_{spin} = 200$ (black), 25 (red), 15 (purple), and 10 (blue) K. T_{rot} is fixed at 200 K. T_{spin} and T_{rot} represent nuclear spin and rotational temperatures, respectively. Indications $(J'_{Ka',Kc'} - J_{Ka,Kc})$ are rotational assignments of the $\widetilde{C}^{-1}B_1(v=0) - \widetilde{X}^{-1}A_1$ (v=0) transition in H₂O, where "o" and "p" denote ortho and para, respectively.

2+1 REMPI spectrum of H₂O via the $C^{1}B_{1}(v=0) \leftarrow X^{1}A_{1}(v=0)$ transition. $(J'_{Ka',Kc'} \leftarrow J_{Ka,Kc})$ are rotational assignments.

