Nuclear spin symmetry conservation in H₂O investigated by direct absorption FTIR spectroscopy of water vapor cooled down in supersonic expansion

<u>R. Georges</u>¹, X. Michaut², A. Moudens², M. Goubet³, O. Pirali⁴, P. Soulard⁵, P. Asselin⁵, T. Huet³, P. Roy⁴, M. Fournier¹, A. Vigasin⁶

(To be published in JPCA 2017)

1. Institut de Physique de Rennes

2. Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères

- 3. Physique de Physique des Lasers, Atomes et Molécules
- 4. Ligne AILES, synchrotron SOLEIL
- 5. MONARIS
- 6. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

NUCLEAR SPIN EFFECTS IN ASTROCHEMISTRY Grenoble, 2-4 may 2017

Introduction

- Nuclear spin conversion of water in the gas phase is still an open question
- Intramolecular processes in an individual water molecule can not lead to spin conversion.
- However an interaction between a water molecule and a water cluster has been evoked as a possible route towards ortho-para conversion (Manca Tanner et al 2013).
- Water clusters can be formed in an adiabatic expansion. However, ortho-para conversion in condensed phase occurs on a timescale of milliseconds (Limbach et al 2006; Abouaf-Marguin et al 2007; Sliter et al 2011). Is the "interaction time" long enough in a supersonic expansion to lead to nuclear spin conversion?

Previous work done by Manca Tanner et al. JPCA 2013

- o CRDS + Slit jet expansion
- o 20H stretching range
- o 3 rovibrational lines are observed
- o Detection of water clusters not possible

Our objectives

- Is the experiment performed by Manca Tanner *et al.* **reproducible**?
- The **number of observed water transitions** has to be increased in order to get a reliable conclusion and to confirm (or to infirm) the results obtained by Manca Tanner *et al.*
- Is it possible to detect water clustering which is supposed to play a major role in the nuclear spin conversion? What is the proportion of water molecules condensing in the jet?
- Can we characterize the flow expansion accurately?

Rotational states associated to para- and ortho-H₂O

The Pauli exclusion principle states that the total wave function of H_2O must be antisymmetric under hydrogen atoms (fermions) exchange

 \Rightarrow Ortho- and para- molecules have different Rotational states

In the present study:

- Ground electronic state (symmetric wave function)
- Ground vibrationnel state (symmetric wave fucntion)

$$\psi_{Tot} = \psi_{elec} \times \psi_{vib} \times \psi_{rot} \times \psi_{ns}$$

The symmetry of ψ_{Tot} depends on the symmetry of ψ_{rot} et ψ_{ns}

Rotational states associated to para- and ortho-H₂O

A symmetric rotational wave function [A⁺/e,e or A⁻/o,o] must correspond to an antisymmetric nuclear spin wave function [B⁺], that is to say to para-H₂O with a statistical weight $g_{NS} = 1$.

An antisymmetric rotational wave function [B⁺/o,e or B⁻/e,o] must correspond to a symmetric nuclear spin wave function [A⁺], that is to say to ortho-H₂O with a statistical weight $g_{NS} = 3$.

Rotational states associated to para- and ortho-H₂O

From Manca Tanner et al. JPCA 2013

Ortho-to-Para Ratio (OPR)

$$OPR(T) = \frac{\sum g_{\rm NS}({\rm ortho})g_J({\rm ortho})\exp(-\frac{hcE_{\rm ortho}}{kT})}{\sum g_{\rm NS}({\rm para})g_J({\rm para})\exp(-\frac{hcE_{\rm para}}{kT})}.$$

The two limiting cases in a supersonic expansion

1. Instantaneous nuclear spin conversion (equilibrium)

The OPR adapts instantly to the equilibrium curve as the temperature of the gas expansion evolves

$$OPR(T) = 3 \frac{\sum g_J(\text{ortho}) \exp(-\frac{hcE_{\text{ortho}}}{kT})}{\sum g_J(\text{para}) \exp(-\frac{hcE_{\text{para}}}{kT})}.$$

2. Absence of nuclear spin conversion

The number of ortho- and para- molecules remains what it was initially in the room temperature reservoir (OPR is fixed to 3)

$$OPR(T) = \left(\frac{g_{\rm NS}({\rm ortho})}{g_{\rm NS}({\rm para})}\right)_{\rm Slow} \frac{\sum g_J({\rm ortho}) \exp(-\frac{hcE_{\rm ortho}}{kT})}{\sum g_J({\rm para}) \exp(-\frac{hcE_{\rm para}}{kT})} = 3$$

In that case, we have to consider an effective nuclear spin statistical weight

$$\left(\frac{g_{\rm NS}({\rm ortho})}{g_{\rm NS}({\rm para})}\right)_{\rm Slow} = 3/\left(\frac{\sum g_J({\rm ortho})\exp(-\frac{hcE_{\rm ortho}}{kT})}{\sum g_J({\rm para})\exp(-\frac{hcE_{\rm para}}{kT})}\right)$$

How to access to the number of nuclear spin isomers?

This information is extracted from the absorption line intensities (absorbances)

Direct absorption FTIR spectroscopy

Jet-AILES apparatus

Supersonic slit-jet expansion (characterized by Pitot probe)

Slit dimension Width either 18 or 36 μm Length 60 mm

Hydrodynamic time between 3 (He) and 9 (Ar) μs

The **gas concentration** can be easily estimated from these measurements

Tuning of the temperature

Temperature is tuned by:

- o condensing a fraction of the water vapor in the expansion
- o changing the specific heat ratio of the carrier gas
- o changing the rotational relaxation efficiency of the carrier gas

Few spectra (OH stretching region)

Few spectra (OH stretching region)

Instrumental resolution: 0.002 cm⁻¹

Rotational temperature

- Example of **"Boltzmann plot"** used to extract the rotational temperature from the absorbance spectra
- Ortho and para lines are treated separately
- The low temperature is corrected from the warm gas contribution

Experimental conditions

_																
Carrier gas			H ₂ O			$P_{\rm H_{2O}}$	P_0^b	$P_{\rm ch}^c$	d^{*d}	$T_{ m rot}({ m O/P})^{e}$	$NL^f_{ m cold}$	$T^g_{ m hot}$	$NL_{ m hot}^f$	$ au_{ m hyd}^{h}$	x^i_{cond}	
		slm										10^{14}		10^{14}		
$\left(\right)$	Ar	He	O_2	g/h	slm	$x^a\%$	hPa	hPa	hPa	μm	К	$\mathrm{molec/cm^2}$	Κ	$\mathrm{molec/cm^2}$	μs	%
	20^{-1}			2	0.041	0.21	1.73	843	0.71	36	10.7±1.6 / -	1.1 ± 0.3	-	-	8.8	75
	20			4	0.083	0.41	3.46	843	0.71	36	9.8±0.6 / -	3.0 ± 0.5	-	-	8.8	65
	20			8	0.166	0.82	6.94	843	0.71	36	$11.6 \pm 0.3 / 13.4 \pm 2.7$	4.3 ± 0.3	288 ± 50	5.2 ± 0.1	8.8	75
	20			10	0.238	1.04	8.68	843	0.71	36	12.0 ± 0.6 / 12.7 ± 0.5	4.8 ± 0.2	167 ± 13	5.6 ± 0.1	8.8	78
	20			12	0.249	1.23	10.37	843	0.71	36	13.0 ± 0.6 / 13.3 ± 0.1	6.0 ± 0.6	176 ± 30	5.6 ± 1.0	8.8	77
	20			20	0.415	2.03	17.15	845	0.71	36	$20.2 \pm 0.5 / 18.9 \pm 0.4$	11.8 ± 1.3	225 ± 25	10.2 ± 1.4	8.8	72
	20			30	0.622	3.01	25.68	853	0.72	36	$22.4\pm0.3/24.1\pm1$	15.3 ± 0.7	257 ± 15	17.6 ± 2.4	8.8	76
	30			20	0.415	1.36	16.35	1202	1.04	36	$18.9 \pm 1.3 / 18.7 \pm 0.4$	8.8 ± 0.8	-	-	8.8	78
	30			50	1.037	3.34	51.20	1533	1.09	18	$25.3 \pm 0.6 / 25.7 \pm 1.3$	13.5 ± 1.5	237 ± 13	28.4 ± 2.2	8.8	79
	30			100	2.074	6.47	(102.74)	1588	1.11	18	32.3 ± 0.4 / 31.9 ± 0.4	22.2 ± 1.7	251 ± 11	53.5 ± 1.7	8.8	83
			20	8	0.166	0.82	8.88	1083	0.69	18	31.3 ± 0.5 / 30.4 ± 4	10.4 ± 0.1	-	-	6.6	
	20		20	8	0.166	0.41	8.25	2013	1.33	18	21.8±2 /18.0±4	7.8 ± 1.2	-	-	7.6	0
		30		4	0.083	0.28	1.54	549	1.11	36	$(41.8\pm3)/39.7\pm4$	3.8 ± 0.2	-	-	2.8	0
=																

^{*a*}water vapor/carrier gas molar ratio; ^{*b*}stagnation pressure; ^{*c*}residual pressure in the expansion chamber; ^{*d*}nozzle width (the slit length is 60 mm); ^{*e*}rotational temperature extracted from *ortho* (O) or *para* rovibrational lines (P); ^{*f*} column densities for hot and cold gases (see text for details); ^{*g*} rotational temperature of the warm residual gas in shear layers; ^{*h*}hydrodynamic time; ^{*i*}fraction of condensed water vapor.

Water clusters signature

Water clustering

Water condensation

- Water vapor condenses all the more as its partial pressure is high
- o A maximum of 83% of condensation is achieved in argon
- Condensation is responsible for a significant rise in temperature

No nuclear spin conversion was observed...

Conclusion

Unlike Manca Tanner's study, no nuclear spin conversion was observed in our supersonic expansion, despite:

- Similar jet conditions
- A very good signal-to-noise ratio
- A direct observation of water clusters
- A larger covered temperature range (10 42 K)
- A larger range of water mole fraction (0.2 6.5%)

Perspective Use of de Laval nozzle uniform flows instead of free-jet expansions

- $\,\circ\,$ Interaction time increased from few μs to ~1 ms
- Intense clustering
- o Equilibrated translational and rotational temperatures

