Nuclear spin symmetry conservation in H$_2$O investigated by direct absorption FTIR spectroscopy of water vapor cooled down in supersonic expansion

(To be published in JPCA 2017)

1. Institut de Physique de Rennes
2. Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères
3. Physique de Physique des Lasers, Atomes et Molécules
4. Ligne AILES, synchrotron SOLEIL
5. MONARIS
6. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Introduction

- Nuclear spin conversion of water in the gas phase is still an open question.

- Intramolecular processes in an individual water molecule can not lead to spin conversion.

- However an interaction between a water molecule and a water cluster has been evoked as a possible route towards ortho-para conversion (Manca Tanner et al 2013).

- Water clusters can be formed in an adiabatic expansion. However, ortho-para conversion in condensed phase occurs on a timescale of milliseconds (Limbach et al 2006; Abouaf-Marguin et al 2007; Sliter et al 2011). Is the “interaction time” long enough in a supersonic expansion to lead to nuclear spin conversion?
Previous work done by Manca Tanner et al. JPCA 2013

- CRDS + Slit jet expansion
- 2OH stretching range
- 3 rovibrational lines are observed
- Detection of water clusters not possible

$R(1_{1,0})$
- ortho

$R(1_{1,1})$
- para

$R(2_{1,2})$
- ortho

No conversion
(weak clustering)

Conversion!
(strong clustering)
Our objectives

- Is the experiment performed by Manca Tanner et al. reproducible?

- The **number of observed water transitions** has to be increased in order to get a reliable conclusion and to confirm (or to infirm) the results obtained by Manca Tanner et al.

- Is it possible to detect **water clustering** which is supposed to play a major role in the nuclear spin conversion? What is the proportion of water molecules condensing in the jet?

- Can we characterize the flow expansion accurately?
Rotational states associated to para- and ortho-H$_2$O

The Pauli exclusion principle states that the total wave function of H$_2$O must be antisymmetric under hydrogen atoms (fermions) exchange

\Rightarrow Ortho- and para- molecules have different Rotational states

In the present study:
- Ground electronic state (symmetric wave function)
- Ground vibrationnel state (symmetric wave function)

The symmetry of ψ_{Tot} depends on the symmetry of ψ_{rot} et ψ_{ns}.
Rotational states associated to para- and ortho-H_2O

A symmetric rotational wave function $[A^+/e,e$ or $A^-/o,o]$ must correspond to an antisymmetric nuclear spin wave function $[B^+]$, that is to say to para-H_2O with a statistical weight $g_{NS} = 1$.

An antisymmetric rotational wave function $[B^+/o,e$ or $B^-/e,o]$ must correspond to a symmetric nuclear spin wave function $[A^+]$, that is to say to ortho-H_2O with a statistical weight $g_{NS} = 3$.
Rotational states associated to para- and ortho-H_2O

From Manca Tanner et al. JPCA 2013
Ortho-to-Para Ratio (OPR)

\[OPR(T) = \frac{\sum g_{NS}(\text{ortho})g_J(\text{ortho}) \exp\left(-\frac{\hbar c E_{\text{ortho}}}{kT}\right)}{\sum g_{NS}(\text{para})g_J(\text{para}) \exp\left(-\frac{\hbar c E_{\text{para}}}{kT}\right)}. \]

From Crovisier Faraday Discuss., 109, 437 (1998)

High temperature limit
OPR = 3

Low temperature limit (0 K)
OPR = 0
The two limiting cases in a supersonic expansion

1. Instantaneous nuclear spin conversion (equilibrium)
 The OPR adapts instantly to the equilibrium curve as the temperature of the gas expansion evolves
 \[
 OPR(T) = \frac{3 \sum g_J(\text{ortho}) \exp\left(-\frac{\hbar c E_{\text{ortho}}}{kT}\right)}{\sum g_J(\text{para}) \exp\left(-\frac{\hbar c E_{\text{para}}}{kT}\right)}.
 \]

2. Absence of nuclear spin conversion
 The number of ortho- and para- molecules remains what it was initially in the room temperature reservoir (OPR is fixed to 3)
 \[
 OPR(T) = \left(\frac{g_{\text{NS(ortho)}}}{g_{\text{NS(para)}}}\right)_{\text{Slow}} \frac{\sum g_J(\text{ortho}) \exp\left(-\frac{\hbar c E_{\text{ortho}}}{kT}\right)}{\sum g_J(\text{para}) \exp\left(-\frac{\hbar c E_{\text{para}}}{kT}\right)} = 3
 \]
 In that case, we have to consider an effective nuclear spin statistical weight
 \[
 \left(\frac{g_{\text{NS(ortho)}}}{g_{\text{NS(para)}}}\right)_{\text{Slow}} = \frac{3}{\left(\frac{\sum g_J(\text{ortho}) \exp\left(-\frac{\hbar c E_{\text{ortho}}}{kT}\right)}{\sum g_J(\text{para}) \exp\left(-\frac{\hbar c E_{\text{para}}}{kT}\right)}\right)}
 \]
How to access to the number of nuclear spin isomers?

This information is extracted from the absorption line intensities (absorbances)

\[
\frac{A_{f_i}}{A_{f'_{i'}}} = \frac{F_{f_i}^N}{F_{f'_{i'}}^N} \times \frac{n_i}{n_{i'}} = \frac{F_{f_i}^N}{F_{f'_{i'}}^N} \times \frac{g_i}{g_{i'}} \exp \left(-\frac{h\nu (E_i - E_{i'})}{kT} \right)
\]

Absorbance (integrated line area)

Line strength

Fractional population in the initial state

\[g_i = g_{NSGJ} \]
Direct absorption FTIR spectroscopy
Jet-AILES apparatus

- Bellows
- M₁, M₂
- Pumping
- Polypropylene windows
- M₃, M₄
- MCT Detector
- Modulated IR parallel beam from FTS
- Optical compartment
- Slit nozzle
- Expansion chamber
Supersonic slit-jet expansion (characterized by Pitot probe)

Slit dimension
Width either 18 or 36 μm
Length 60 mm

Hydrodynamic time
between 3 (He) and 9 (Ar) μs

The gas concentration can be easily estimated from these measurements
Tuning of the temperature

Temperature is tuned by:
- condensing a fraction of the water vapor in the expansion
- changing the specific heat ratio of the carrier gas
- changing the rotational relaxation efficiency of the carrier gas
Few spectra (OH stretching region)

$\chi = 6.47\%$
$T_{rot} = 32.1 \pm 0.4 K$

$\chi = 1.23\%$
$T_{rot} = 13.3 \pm 0.2 K$

$\chi = 0.41\%$
$T_{rot} = 9.8 \pm 1.5 K$

Wavenumber / cm$^{-1}$
Few spectra (OH stretching region)

Instrumental resolution: 0.002 cm$^{-1}$
Rotational temperature

- Example of "Boltzmann plot" used to extract the rotational temperature from the absorbance spectra
- Ortho and para lines are treated separately
- The low temperature is corrected from the warm gas contribution

\[n_J(2J+1) \text{ (molecule/cm}^2) \]

Rotational Energy (K)

- \(T_{\text{hot}} = 251 \pm 11 \text{ K} \)
- \(T_{\text{ortho}} = 32.3 \pm 0.4 \text{ K} \)
- \(T_{\text{para}} = 31.9 \pm 0.4 \text{ K} \)
<table>
<thead>
<tr>
<th>Carrier gas</th>
<th>(\text{H}_2\text{O})</th>
<th>(P_{\text{H}_2\text{O}})</th>
<th>(P_0^b)</th>
<th>(P_{ch}^c)</th>
<th>(d^{i/d})</th>
<th>(T_{\text{rot}(O/P)}^z)</th>
<th>(N L_{\text{cold}}^{j})</th>
<th>(T_{\text{rot}}^g)</th>
<th>(N L_{\text{hot}}^{f})</th>
<th>(\tau_{\text{hyd}}^h)</th>
<th>(x_{\text{cond}}^i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>slm</td>
<td>g/h</td>
<td>slm</td>
<td>(\text{mol}%)</td>
<td>hPa</td>
<td>hPa</td>
<td>(\mu\text{m})</td>
<td>K</td>
<td>molec/cm(^2)</td>
<td>K</td>
<td>molec/cm(^2)</td>
<td>(\mu\text{s})</td>
</tr>
<tr>
<td>Ar</td>
<td>20</td>
<td>2</td>
<td>0.041</td>
<td>0.21</td>
<td>1.73</td>
<td>843</td>
<td>0.71</td>
<td>36</td>
<td>10.7±1.6 / -</td>
<td>1.1±0.3</td>
<td>-</td>
</tr>
<tr>
<td>He</td>
<td>20</td>
<td>4</td>
<td>0.083</td>
<td>0.41</td>
<td>3.46</td>
<td>843</td>
<td>0.71</td>
<td>36</td>
<td>9.8±0.6 / -</td>
<td>3.0±0.5</td>
<td>-</td>
</tr>
<tr>
<td>He</td>
<td>20</td>
<td>8</td>
<td>0.166</td>
<td>0.82</td>
<td>6.94</td>
<td>843</td>
<td>0.71</td>
<td>36</td>
<td>11.6±0.3 / 13.4±2.7</td>
<td>4.3±0.3</td>
<td>288±50</td>
</tr>
<tr>
<td>O(_2)</td>
<td>20</td>
<td>10</td>
<td>0.238</td>
<td>1.04</td>
<td>8.68</td>
<td>843</td>
<td>0.71</td>
<td>36</td>
<td>12.0±0.6 / 12.7±0.5</td>
<td>4.8±0.2</td>
<td>167±13</td>
</tr>
<tr>
<td>O(_2)</td>
<td>20</td>
<td>12</td>
<td>0.249</td>
<td>1.23</td>
<td>10.37</td>
<td>843</td>
<td>0.71</td>
<td>36</td>
<td>13.0±0.6 / 13.3±0.1</td>
<td>6.0±0.6</td>
<td>176±30</td>
</tr>
<tr>
<td>O(_2)</td>
<td>20</td>
<td>20</td>
<td>0.415</td>
<td>2.03</td>
<td>17.15</td>
<td>845</td>
<td>0.71</td>
<td>36</td>
<td>20.2±0.5 / 18.9±0.4</td>
<td>11.8±1.3</td>
<td>225±25</td>
</tr>
<tr>
<td>O(_2)</td>
<td>20</td>
<td>30</td>
<td>0.622</td>
<td>3.01</td>
<td>25.68</td>
<td>853</td>
<td>0.72</td>
<td>36</td>
<td>22.4±0.3 / 24.1±1</td>
<td>15.3±0.7</td>
<td>257±15</td>
</tr>
<tr>
<td>O(_2)</td>
<td>30</td>
<td>20</td>
<td>0.415</td>
<td>1.36</td>
<td>16.35</td>
<td>1202</td>
<td>1.04</td>
<td>36</td>
<td>18.9±1.3 / 18.7±0.4</td>
<td>8.8±0.8</td>
<td>-</td>
</tr>
<tr>
<td>O(_2)</td>
<td>30</td>
<td>50</td>
<td>1.037</td>
<td>3.34</td>
<td>51.20</td>
<td>1533</td>
<td>1.09</td>
<td>18</td>
<td>25.3±0.6 / 25.7±1.3</td>
<td>13.5±1.5</td>
<td>237±13</td>
</tr>
<tr>
<td>O(_2)</td>
<td>30</td>
<td>100</td>
<td>2.074</td>
<td>6.47</td>
<td>102.74</td>
<td>1588</td>
<td>1.11</td>
<td>18</td>
<td>32.3±0.4 / 31.9±0.4</td>
<td>22.2±1.7</td>
<td>251±11</td>
</tr>
<tr>
<td>Ar</td>
<td>20</td>
<td>8</td>
<td>0.166</td>
<td>0.82</td>
<td>8.88</td>
<td>1083</td>
<td>0.69</td>
<td>18</td>
<td>31.3±0.5 / 30.4±4</td>
<td>10.4±0.1</td>
<td>-</td>
</tr>
<tr>
<td>Ar</td>
<td>20</td>
<td>8</td>
<td>0.166</td>
<td>0.41</td>
<td>8.25</td>
<td>2013</td>
<td>1.33</td>
<td>18</td>
<td>21.8±2 / 18.0±4</td>
<td>7.8±1.2</td>
<td>-</td>
</tr>
<tr>
<td>Ar</td>
<td>30</td>
<td>4</td>
<td>0.083</td>
<td>0.28</td>
<td>1.54</td>
<td>549</td>
<td>1.11</td>
<td>36</td>
<td>41.8±3 / 39.7±4</td>
<td>3.8±0.2</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^a\) water vapor/carryer gas molar ratio; \(^b\) stagnation pressure; \(^c\) residual pressure in the expansion chamber; \(^d\) nozzle width (the slit length is 60 mm); \(^e\) rotational temperature extracted from ortho (O) or para rovibrational lines (P); \(^f\) column densities for hot and cold gases (see text for details); \(^g\) rotational temperature of the warm residual gas in shear layers; \(^h\) hydrodynamic time; \(^i\) fraction of condensed water vapor.
Water clusters signature
Water clustering

Intrum. Resolution
1 cm\(^{-1}\)
Water condensation

- Water vapor condenses all the more as its partial pressure is high.
- A maximum of 83% of condensation is achieved in argon.
- Condensation is responsible for a significant rise in temperature.

![Graph showing water expanded in argon](image)
No nuclear spin conversion was observed...
Conclusion

Unlike Manca Tanner’s study, no nuclear spin conversion was observed in our supersonic expansion, despite:

- Similar jet conditions
- A very good signal-to-noise ratio
- A direct observation of water clusters
- A larger covered temperature range (10 – 42 K)
- A larger range of water mole fraction (0.2 – 6.5%)
Use of de Laval nozzle uniform flows instead of free-jet expansions

- Interaction time increased from few μs to ~ 1 ms
- Intense clustering
- Equilibrated translational and rotational temperatures