Rotational state and ortho-para conversion of H₂ on solid surfaces

Institute of Industrial Science, University of Tokyo Katsuyuki Fukutani

Co-workers:

- S. Ohno, D. Ivanov
- T. Sugimoto
- E. Arguelles, W.A. Dino

KF, TS, Prog. Surf. Sci. 88 (2013) 279.

Spin-isomers: rotational state

Surface-catalyzed op conversion

- γ : collision rate
- S: sticking probability

LT ortho to para conversion probability: *P*

$$P = S\gamma \frac{\tau^{-1}}{t_R^{-1} + \tau^{-1}}$$
$$t_R = t_0 \exp(\frac{E_d}{kT})$$
$$t_0 \approx 10^{-11} - 10^{-13}$$

 $\cdot \cdot \cdot$, but not as simple as thought

τ : op conversion time

Prog. Surf. Sci. 88 (2013) 279.

Experiment & theory

- Sample: Pd(210) in UHV n-H₂ (o/p=3), p-H₂, o-H₂ (separation with Al₂O₃) Detection: REMPI via E,F
- 2. DFT & quantum simulation

L. Amiaud et al., PRL 100, 056101 (2008)

T. Sugimoto, KF, PRL 112, 146101 (2014).

Potential anisotropy

Potential: orientation-dependent

$$V_0(Z,\theta) + V_2(Z,\theta)P_2(\cos\theta)$$

Effects of the anisotropic potential

► Energy diagram: 1st order perturbation

 $V_0(Z,\theta) + V_2(Z,\theta)P_2(\cos\theta)$

SS 152, 702 (1985); PRL 112, 146101 (2014).

 \checkmark If op conversion is fast,

Summary

Rotational state and op conversion of H₂

in molecular chemisorption on Pd(210)

• Potential anisotropy: preference of flat-lying orientation

 \rightarrow higher desorption temp. of J=1 than J=0

•Fast op conversion: $\tau = 0.8$ s

Cf. physisoption electronic mechanism: $\tau \sim 100-1000$ s magnetic mechanism: $\tau \sim 1-10$ s

High ortho-para ratio in the adsorption state on Pd(210)