

Nuclear Spin Dependent Chemistry of the Trihydrogen Cation in Diffuse Interstellar Clouds

Kyle N. Crabtree, Department of Chemistry, UC Davis

Collaborators

Tobias Albertsson (Max Planck Institute for Radioastronomy) Nick Indriolo (University of Michigan) Holger Kreckel (Max Planck Institute for Nuclear Physics) Benjamin J. McCall (University of Illinois) Stephan Schlemmer (University of Cologne) Dmitry Semenov (Max Planck Institute for Astronomy) Andreas Wolf (Max Planck Institute for Nuclear Physics)

H_{3}^{+} in diffuse clouds

Detection of H₃⁺ in the Diffuse Interstellar Medium Toward Cygnus OB2 No. 12

B. J. McCall,* T. R. Geballe, K. H. Hinkle, T. Oka

The molecular ion H_3^+ is considered the cornerstone of interstellar chemistry because it initiates the reactions responsible for the production of many larger molecules. Recently discovered in dense molecular clouds, H_3^+ has now been observed in the diffuse interstellar medium toward Cygnus OB2 No. 12. Analysis of H_3^+ chemistry suggests that the high H_3^+ column density (3.8 \times 10¹⁴ per square centimeter) is due not to a high H_3^+ concentration but to a long absorption path. This and other work demonstrate the ubiquity of H_3^+ and its potential as a probe of the physical and chemical conditions in the interstellar medium.

SCIENCE • VOL. 279 • 20 MARCH 1998 • www.sciencemag.org

H₃⁺ IN DIFFUSE INTERSTELLAR CLOUDS: A TRACER FOR THE COSMIC-RAY IONIZATION RATE

NICK INDRIOLO,¹ THOMAS R. GEBALLE,² TAKESHI OKA,³ AND BENJAMIN J. MCCALL¹

Received 2007 June 6; accepted 2007 September 4 THE ASTROPHYSICAL JOURNAL, 671:1736–1747, 2007 December 20

© 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Spin modifications: H_3^+ and H_2

Diffuse molecular clouds

- Typical Conditions:
 - ▶ n ~ 10–100 cm⁻³
 - ▶ f_{H2} > 0.1 (typ 0.9)
 - ▶ x_e ~ 1.5 x 10⁻⁴
 - ▶ log[N (cm⁻2)] ~ 21
 - ▶ T ~ 50-100 K

Diffuse molecular clouds

- Typical Conditions:
 - ▶ n ~ 10–100 cm⁻³
 - ▶ f_{H2} > 0.1 (typ 0.9)
 - ▶ x_e ~ 1.5 x 10⁻⁴
 - log[N (cm⁻²)] ~ 21

▶ T ~ 50-100 K

- 9 sightlines with H₃⁺ and H₂ observations:
 - ► <T_{H2}> = 61 K
 - ▶ <T_{H3+}> = 28 K

▶ In diffuse clouds, only (1,0) and (1,1) levels observed

MENT OF CHEMISTRY

- Collision timescale > 60 days
- ightarrow H₃⁺ ion experiences 10–100 collisions w/ H₂ during lifetime

T. Oka and E. Epp, ApJ 613, 349 (2004).

Observations of $H_3^+ \rightarrow para-H_3^+$ fraction

UCDAVIS DEPARTMENT OF CHEMISTRY

Observations of H_3^+ and H_2^- in diffuse clouds

DEPARTMENT OF CHEMISTRY

K. N. Crabtree et al. ApJ 729, 15 (2011); T. Albertsson et al. ApJ 787, 44 (2014).

Observations of H₃⁺ and H₂ in diffuse clouds

DEPARTMENT OF CHEMISTRY

K. N. Crabtree et al. ApJ 729, 15 (2011); T. Albertsson et al. ApJ 787, 44 (2014).

B. L. Rachford et al. ApJ 577, 221-244 (2002); B. L. Rachford et al. ApJS 180, 125-137 (2009).

Observations of H_3^+ and H_2 in diffuse clouds

DEPARTMENT OF CHEMISTRY

K. N. Crabtree et al. ApJ 729, 15 (2011); T. Albertsson et al. ApJ 787, 44 (2014).

B. L. Rachford et al. ApJ 577, 221-244 (2002); B. L. Rachford et al. ApJS 180, 125-137 (2009).

► Formation: 1) $H_2 + CR \rightarrow H_2^+ + e^- + CR'$ 2) $H_2^+ + H_2 \rightarrow H_3^+ + H$

Spin-dependent H₃⁺ chemistry

► Formation:

- 1) $H_2 + CR \rightarrow H_2^+ + e^- + CR'$ 2) $H_2^+ + H_2 \rightarrow H_3^+ + H$
- Thermalization:
 - $\blacktriangleright H_3^{+} + H_2 \rightarrow H_2 + H_3^{+}$

Spin-dependent H₃⁺ chemistry

UCDAVIS DEPARTMENT OF CHEMISTRY

F. S. dos Santos et al. J. Chem. Phys. 127, 124309 (2007). H. Kreckel et al. Phys. Rev. A 82, 042715 (2010).

K. Park and J. C. Light, J. Chem Phys. 127, 224101 (2007). E. Hugo, et al., J. Chem. Phys. 130, 164302 (2009).

Plasma experiments and semiclassical theory

M. Cordonnier et al., J. Chem. Phys. 113, 3181 (2000); K. N. Crabtree et al., J. Chem. Phys. 134, 194311 (2011); M. Hejduk et al., Plasma Sources Sci. Tech. 21, 024002 (2012); S. Gomez-Carrasco et al., J. Chem. Phys. 137, 094303 (2012).

Plasma experiments and semiclassical theory

M. Cordonnier et al., J. Chem. Phys. 113, 3181 (2000); K. N. Crabtree et al., J. Chem. Phys. 134, 194311 (2011); M. Hejduk et al., Plasma Sources Sci. Tech. 21, 024002 (2012); S. Gomez-Carrasco et al., J. Chem. Phys. 137, 094303 (2012).

Exchange requires 2 hops + internal rotation (at minimum)

► Long complex lifetime \rightarrow statistical outcome (α = 0.5)

Ion trap experiment: simulate diffuse clouds UCDAVIS

Ion trap LIR measurements

UCDAVIS DEPARTMENT OF CHEMISTRY

Ion trap LIR measurements

DEPARTMENT OF CHEMISTRY

Ion trap LIR measurements

UCDAVIS DEPARTMENT OF CHEMISTRY

Ion trap LIR results

H₃⁺ DR: A controversial history

Outstanding question: DR rates for o- and $p-H_3^+$ in ground rotational states (1,0) and (1,1)?

DR measurement: TSR (MPIK)

Piezo Supersonic Expansion Source

Spin-dependent H₃⁺ DR

- Overall rate agrees with theory; previous storage ring measurements
- At low collision energies, p-H₃⁺ DR is
 ~2x rate of o-H₃⁺ DR
- Complication: fragment imaging shows H₃⁺ is rotationally hot (900 K) in ring → acceleration heating
- No state-selective storage ring measurements have been made

Other studies of H_3^+ DR

UCDAVIS DEPARTMENT OF CHEMISTRY

► Theory

- p-H₃⁺ is ~3-4x rate of o-H₃⁺ DR at 50-70 K
- Sensitive to exact H₃ Rydberg resonance energies

- p-H₃⁺ is at least 3x rate of o-H₃⁺ DR at 60 K
- Sensitive to He, Ar, H₂ densities

All evidence suggests $p-H_3^+$ DR is faster than $o-H_3^+$ at diffuse cloud temperatures!

Theory: F. S. dos Santos et al. J. Chem. Phys. 127, 124309 (2007). Plasma experiments: M. Hejduk et al. J. Chem. Phys. 143, 044303 (2015).

UCDAVIS DEPARTMENT OF CHEMISTRY

Formation:	
1) $H_2 + CR \rightarrow H_2^+ + e^-$ (rate limiting step)	Nuclear spin statistics
2) $H_2^+ + H_2 \rightarrow H_3^+ + H$ (fast)	
Thermalization:	Microcanonical model,
$H_{3}^{+} + H_{2} \rightarrow H_{2} + H_{3}^{+}$	Hollow cathode experiment, Ion trap LIR experiment
Destruction (DR):	
► $H_3^+ + e^- \rightarrow [H_2 + H] \text{ or } [3H]$	Storage ring measurements; theory

$$p_{3} = \frac{k_{e,o}\frac{2x_{e}}{f}\left(\frac{1}{3} + \frac{2}{3}p_{2}\right) + (k_{oopp} + k_{oopo})(1 - p_{2}) + k_{oppo}p_{2}}{k_{e,p}\frac{2x_{e}}{f}\left(\frac{2}{3} - \frac{2}{3}p_{2}\right) + k_{e,o}\frac{2x_{e}}{f}\left(\frac{1}{3} + \frac{2}{3}p_{2}\right) + (k_{oopp} + k_{oopo} + k_{poop} + k_{pooo})(1 - p_{2}) + (k_{oppo} + k_{ppoo})p_{2}}.$$

f = molecular fraction = 0.9 x_e = fractional ionization = 1.5 x 10⁻⁴

UCDAVIS DEPARTMENT OF CHEMISTRY

K. N. Crabtree et al. ApJ 729, 15 (2011).

K. N. Crabtree and B. J. McCall Phil. Trans. A 370, 5055 (2012)

UCDAVIS DEPARTMENT OF CHEMISTRY

K. N. Crabtree et al. ApJ 729, 15 (2011).

K. N. Crabtree and B. J. McCall Phil. Trans. A 370, 5055 (2012)

Time-dependent modeling

UCDAVIS DEPARTMENT OF CHEMISTRY

Code: ALCHEMIC

- Deuterium chemistry
- ► H₃⁺/H₂ spin chemistry
- ► 40,000+ reactions
- 1300 species
- Variable parameters:
 - $\zeta = 10^{-15}$ (C15), 10^{-16} (S), 10^{-17} (C17) S⁻¹
 - ► T = 10 90 K
 - ▶ n_H = 10 1000 cm⁻³
 - DR rate coefficients:
 - ▷ $k_p = k_o$ ("S" McCall et al 2004)
 - ▷ 2(k_p = k_o) ("2X" McCall et al 2004)
 - ▷ $k_p > k_o$ (dos Santos et al 2007)

Timescale for H_2 thermalization: < 10⁶ yr (n = 10 cm⁻³, ζ > 10⁻¹⁶ s⁻¹)

Time-dependent modeling

UCDAVIS DEPARTMENT OF CHEMISTRY

Code: ALCHEMIC

- Deuterium chemistry
- H₃+/H₂ spin chemistry
- ▶ 40,000+ reactions
- 1300 species
- Variable parameters:
 - ► $\zeta = 10^{-15}$ (C15), 10^{-16} (S), 10^{-17} (C17) S⁻¹
 - ► T = 10 90 K
 - ▶ n_H = 10 1000 cm⁻³
 - DR rate coefficients:
 - ▷ $k_p = k_o$ ("S" McCall et al 2004)
 - ▷ 2(k_p = k_o) ("2X" McCall et al 2004)
 - ▷ $k_p > k_o$ (dos Santos et al 2007)

Time-dependent modeling

UCDAVIS DEPARTMENT OF CHEMISTRY

Code: ALCHEMIC

- Deuterium chemistry
- H₃+/H₂ spin chemistry
- ▶ 40,000+ reactions
- 1300 species
- Variable parameters:
 - $\zeta = 10^{-15}$ (C15), 10^{-16} (S), 10^{-17} (C17) s⁻¹
 - ► T = 10 90 K
 - ▶ n_H = 10 1000 cm⁻³
 - DR rate coefficients:
 - ▷ k_p = k_o ("S" McCall et al 2004)
 - ▷ 2(k_p = k_o) ("2X" McCall et al 2004)
 - ▷ $k_p > k_o$ (dos Santos et al 2007)

Comparison to observations: 1 MYr

UCDAVIS DEPARTMENT OF CHEMISTRY

 "Agreement" using inflated DR rates (ortho = para) and elevated ζ.

Comparison to observations: 1 MYr

UCDAVIS DEPARTMENT OF CHEMISTRY

T. Albertsson et al. ApJ 787, 44 (2014).

Comparison to observations: 1 MYr

UCDAVIS DEPARTMENT OF CHEMISTRY

Excess p-H₃⁺ in diffuse molecular clouds not well-explained by latest experiments & models

MENT OF CHEMISTRY